Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(8)2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37112237

RESUMO

This study presents a comprehensive approach to mapping local magnetic field anomalies with robustness to magnetic noise from an unmanned aerial vehicle (UAV). The UAV collects magnetic field measurements, which are used to generate a local magnetic field map through Gaussian process regression (GPR). The research identifies two categories of magnetic noise originating from the UAV's electronics, adversely affecting map precision. First, this paper delineates a zero-mean noise arising from high-frequency motor commands issued by the UAV's flight controller. To mitigate this noise, the study proposes adjusting a specific gain in the vehicle's PID controller. Next, our research reveals that the UAV generates a time-varying magnetic bias that fluctuates throughout experimental trials. To address this issue, a novel compromise mapping technique is introduced, enabling the map to learn these time-varying biases with data collected from multiple flights. The compromise map circumvents excessive computational demands without sacrificing mapping accuracy by constraining the number of prediction points used for regression. A comparative analysis of the magnetic field maps' accuracy and the spatial density of observations employed in map construction is then conducted. This examination serves as a guideline for best practices when designing trajectories for local magnetic field mapping. Furthermore, the study presents a novel consistency metric intended to determine whether predictions from a GPR magnetic field map should be retained or discarded during state estimation. Empirical evidence from over 120 flight tests substantiates the efficacy of the proposed methodologies. The data are made publicly accessible to facilitate future research endeavors.

2.
Sensors (Basel) ; 21(23)2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34883815

RESUMO

Common electric powered wheelchairs cannot safely negotiate architectural barriers (i.e., curbs) which could injure the user and damage the wheelchair. Robotic wheelchairs have been developed to address this issue; however, proper alignment performed by the user is needed prior to negotiating curbs. Users with physical and/or sensory impairments may find it challenging to negotiate such barriers. Hence, a Curb Recognition and Negotiation (CRN) system was developed to increase user's speed and safety when negotiating a curb. This article describes the CRN system which combines an existing curb negotiation application of a mobility enhancement robot (MEBot) and a plane extraction algorithm called Polylidar3D to recognize curb characteristics and automatically approach and negotiate curbs. The accuracy and reliability of the CRN system were evaluated to detect an engineered curb with known height and 15 starting positions in controlled conditions. The CRN system successfully recognized curbs at 14 out of 15 starting positions and correctly determined the height and distance for the MEBot to travel towards the curb. While the MEBot curb alignment was 1.5 ± 4.4°, the curb ascending was executed safely. The findings provide support for the implementation of a robotic wheelchair to increase speed and reduce human error when negotiating curbs and improve accessibility.


Assuntos
Procedimentos Cirúrgicos Robóticos , Robótica , Cadeiras de Rodas , Desenho de Equipamento , Humanos , Negociação , Reprodutibilidade dos Testes
3.
Sensors (Basel) ; 21(19)2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34640685

RESUMO

Magnetometers measure the local magnetic field and are present in most modern inertial measurement units (IMUs). Readings from magnetometers are used to identify Earth's Magnetic North outdoors, but are often ignored during indoor experiments since the magnetic field does not behave how most expect. This paper presents methods to create, validate, and visualize three-dimensional magnetic field maps to expand the use of magnetic fields as a sensing modality for navigation. The utility of these maps is measured in their ability to accurately represent the magnetic field and to enable dynamic attitude estimation. In experiments with motion capture truth data, a small multicopter with three-axis inertial measurements, including magnetometer, traversed five flight profiles distinctly exciting roll, pitch, and yaw motion to provide interesting trajectories for attitude estimation. Indoor experimental results were compared to those outdoors to emphasize how spatial variation in the magnetic field drives the need for our mapping techniques. Our work presents a new way of visualizing 3D magnetic fields, which allows users to better reason about the magnetic field in their workspace. Next, we show that magnetic field maps generated from coverage patterns are generally more accurate, but training such maps using observations from desired flight paths is sufficient in the vicinity of these paths. All training sets were interpolated using Gaussian process regression (GPR), which yielded maps with <1 µT of error when interpolating between and extrapolating outside of observed locations. Finally, we validated the utility of our GPR-based maps in enabling attitude estimates in regions of high magnetic field spatial variation with experimental data.


Assuntos
Algoritmos , Campos Magnéticos , Magnetismo , Movimento (Física) , Distribuição Normal
4.
IEEE Trans Cybern ; 47(11): 3879-3891, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27429454

RESUMO

This paper investigates a comfort-based route planner that considers both travel time and ride comfort. We first present a framework of simultaneous road profile estimation and anomaly detection with commonly available vehicle sensors. A jump-diffusion process-based state estimator is developed and used along with a multi-input observer for road profile estimation. The estimation framework is evaluated in an experimental test vehicle and promising performance is demonstrated. Second, three objective comfort metrics are developed based on factors such as travel time, road roughness, road anomaly, and intersection. A comfort-based route planning problem is then formulated with these metrics and an extended Dijkstra's algorithm is exploited to solve the problem. A cloud-based implementation of our comfort-based route planning approach is proposed to facilitate information access and fast computation. Finally, a real-world case study, comfort-based route planning from Ford Research and Innovation Center, Michigan to Ford Rouge Factory Tour, Michigan, is presented to illustrate the efficacy of the proposed route planning framework.

5.
Sensors (Basel) ; 15(9): 23020-49, 2015 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-26378541

RESUMO

A cyber-physical system (CPS) is composed of tightly-integrated computation, communication and physical elements. Medical devices, buildings, mobile devices, robots, transportation and energy systems can benefit from CPS co-design and optimization techniques. Cyber-physical vehicle systems (CPVSs) are rapidly advancing due to progress in real-time computing, control and artificial intelligence. Multidisciplinary or multi-objective design optimization maximizes CPS efficiency, capability and safety, while online regulation enables the vehicle to be responsive to disturbances, modeling errors and uncertainties. CPVS optimization occurs at design-time and at run-time. This paper surveys the run-time cooperative optimization or co-optimization of cyber and physical systems, which have historically been considered separately. A run-time CPVS is also cooperatively regulated or co-regulated when cyber and physical resources are utilized in a manner that is responsive to both cyber and physical system requirements. This paper surveys research that considers both cyber and physical resources in co-optimization and co-regulation schemes with applications to mobile robotic and vehicle systems. Time-varying sampling patterns, sensor scheduling, anytime control, feedback scheduling, task and motion planning and resource sharing are examined.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...