Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(18)2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34575882

RESUMO

The high-throughput molecular analysis of gene targeting (GT) events is made technically challenging by the residual presetabce of donor molecules. Large donor molecules restrict primer placement, resulting in long amplicons that cannot be readily analyzed using standard NGS pipelines or qPCR-based approaches such as ddPCR. In plants, removal of excess donor is time and resource intensive, often requiring plant regeneration and weeks to months of effort. Here, we utilized Oxford Nanopore Amplicon Sequencing (ONAS) to bypass the limitations imposed by donor molecules with 1 kb of homology to the target and dissected GT outcomes at three loci in Nicotiana benthamia leaves. We developed a novel bioinformatic pipeline, Phased ANalysis of Genome Editing Amplicons (PANGEA), to reduce the effect of ONAS error on amplicon analysis and captured tens of thousands of somatic plant GT events. Additionally, PANGEA allowed us to collect thousands of GT conversion tracts 5 days after reagent delivery with no selection, revealing that most events utilized tracts less than 100 bp in length when incorporating an 18 bp or 3 bp insertion. These data demonstrate the usefulness of ONAS and PANGEA for plant GT analysis and provide a mechanistic basis for future plant GT optimization.


Assuntos
Biologia Computacional , Marcação de Genes , Genes de Plantas , Sequenciamento por Nanoporos , Análise de Sequência de DNA , Biologia Computacional/métodos , Marcação de Genes/métodos , Genoma de Planta , Genômica/métodos , Sequenciamento por Nanoporos/métodos
2.
PLoS One ; 10(12): e0144591, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26657719

RESUMO

Genome editing using sequence-specific nucleases (SSNs) offers an alternative approach to conventional genetic engineering and an opportunity to extend the benefits of genetic engineering in agriculture. Currently available SSN platforms, such as zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and CRISPR/Cas (clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated systems (Cas)) have been used in a range of plant species for targeted mutagenesis via non-homologous end joining (NHEJ) are just beginning to be explored in crops such as potato (Solanum tuberosum Group Tuberosum L.). In this study, CRISPR/Cas reagents expressing one of two single-guide RNA (sgRNA) targeting the potato ACETOLACTATE SYNTHASE1 (StALS1) gene were tested for inducing targeted mutations in callus and stable events of diploid and tetraploid potato using Agrobacterium-mediated transformation with either a conventional T-DNA or a modified geminivirus T-DNA. The percentage of primary events with targeted mutations ranged from 3-60% per transformation and from 0-29% above an expected threshold based on the number of ALS alleles. Primary events with targeted mutation frequencies above the expected threshold were used for mutation cloning and inheritance studies using clonal propagation and crosses or selfing. Four of the nine primary events used for mutation cloning had more than one mutation type, and eight primary events contained targeted mutations that were maintained across clonal generations. Somatic mutations were most evident in the diploid background with three of the four primary events having more than two mutation types at a single ALS locus. Conversely, in the tetraploid background, four of the five candidates carried only one mutation type. Single targeted mutations were inherited through the germline of both diploid and tetraploid primary events with transmission percentages ranging from 87-100%. This demonstration of CRISPR/Cas in potato extends the range of plant species modified using CRISPR/Cas and provides a framework for future studies.


Assuntos
Sistemas CRISPR-Cas , Genoma de Planta , Mutação , Plantas Geneticamente Modificadas/genética , Solanum tuberosum/genética , Bases de Dados Genéticas , Marcação de Genes , Mutagênese Sítio-Dirigida
3.
Plant Cell ; 26(1): 151-63, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24443519

RESUMO

Sequence-specific nucleases enable facile editing of higher eukaryotic genomic DNA; however, targeted modification of plant genomes remains challenging due to ineffective methods for delivering reagents for genome engineering to plant cells. Here, we use geminivirus-based replicons for transient expression of sequence-specific nucleases (zinc-finger nucleases, transcription activator-like effector nucleases, and the clustered, regularly interspaced, short palindromic repeat/Cas system) and delivery of DNA repair templates. In tobacco (Nicotiana tabacum), replicons based on the bean yellow dwarf virus enhanced gene targeting frequencies one to two orders of magnitude over conventional Agrobacterium tumefaciens T-DNA. In addition to the nuclease-mediated DNA double-strand breaks, gene targeting was promoted by replication of the repair template and pleiotropic activity of the geminivirus replication initiator proteins. We demonstrate the feasibility of using geminivirus replicons to generate plants with a desired DNA sequence modification. By adopting a general plant transformation method, plantlets with a desired DNA change were regenerated in <6 weeks. These results, in addition to the large host range of geminiviruses, advocate the use of replicons for plant genome engineering.


Assuntos
Engenharia Genética/métodos , Genoma de Planta , Nicotiana/genética , Replicon , Agrobacterium tumefaciens/genética , Arabidopsis/genética , Quebras de DNA de Cadeia Dupla , DNA Bacteriano , Geminiviridae/genética , Marcação de Genes , Plantas Geneticamente Modificadas/genética , Transformação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...