Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Med Chem ; 251: 115132, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-36934521

RESUMO

N-Acyl indolines 4 are potent, non-covalent Notum inhibitors developed from a covalent virtual screening hit 2a. The lead compounds were simple to synthesise, achieved excellent potency in a biochemical Notum-OPTS assay and restored Wnt signalling in a cell-based TCF/LEF reporter assay. Multiple high resolution X-ray structures established a common binding mode of these inhibitors with the indoline bound centred in the palmiteolate pocket with key interactions being aromatic stacking and a water mediated hydrogen bond to the oxyanion hole. These N-acyl indolines 4 will be useful tools for use in vitro studies to investigate the role of Notum in disease models, especially when paired with a structurally related covalent inhibitor (e.g. 4w and 2a). Overall, this study highlights the designed switch from covalent to non-covalent Notum inhibitors and so illustrates a complementary approach for hit generation and target inhibition.


Assuntos
Hidrolases de Éster Carboxílico , Via de Sinalização Wnt , Fenômenos Biofísicos
2.
RSC Adv ; 12(41): 26497-26503, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36275171

RESUMO

1-Phenyl-1H-1,2,3-triazole 1 (ARUK3001185) was prepared on large scale from aniline 4 by application of both (1) a copper catalyzed azide-alkyne cycloaddition (CuAAC) with (trimethylsilyl)acetylene, and (2) a Clark modification of the Sakai reaction. The one-pot Sakai-Clark method with (MeO)2CHCH[double bond, length as m-dash]NNHTos (2b) proved to be superior as it was operationally simple, metal-free, and avoided the use of aryl azide 7. The Sakai-Clark method has been reliably performed on large scale to produce >100 g of 1 in good efficiency and high purity.

3.
ACS Chem Neurosci ; 13(13): 2060-2077, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35731924

RESUMO

The Wnt signaling suppressor Notum is a promising target for osteoporosis, Alzheimer's disease, and colorectal cancers. To develop novel Notum inhibitors, we used an X-ray crystallographic fragment screen with the Diamond-SGC Poised Library (DSPL) and identified 59 fragment hits from the analysis of 768 data sets. Fifty-eight of the hits were found bound at the enzyme catalytic pocket with potencies ranging from 0.5 to >1000 µM. Analysis of the fragments' diverse binding modes, enzymatic inhibitory activities, and chemical properties led to the selection of six hits for optimization, and five of these resulted in improved Notum inhibitory potencies. One hit, 1-phenyl-1,2,3-triazole 7, and its related cluster members, have shown promising lead-like properties. These became the focus of our fragment development activities, resulting in compound 7d with IC50 0.0067 µM. The large number of Notum fragment structures and their initial optimization provided an important basis for further Notum inhibitor development.


Assuntos
Cristalografia por Raios X
4.
J Med Chem ; 65(10): 7212-7230, 2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35536179

RESUMO

Notum is a carboxylesterase that suppresses Wnt signaling through deacylation of an essential palmitoleate group on Wnt proteins. There is a growing understanding of the role Notum plays in human diseases such as colorectal cancer and Alzheimer's disease, supporting the need to discover improved inhibitors, especially for use in models of neurodegeneration. Here, we have described the discovery and profile of 8l (ARUK3001185) as a potent, selective, and brain-penetrant inhibitor of Notum activity suitable for oral dosing in rodent models of disease. Crystallographic fragment screening of the Diamond-SGC Poised Library for binding to Notum, supported by a biochemical enzyme assay to rank inhibition activity, identified 6a and 6b as a pair of outstanding hits. Fragment development of 6 delivered 8l that restored Wnt signaling in the presence of Notum in a cell-based reporter assay. Assessment in pharmacology screens showed 8l to be selective against serine hydrolases, kinases, and drug targets.


Assuntos
Inibidores Enzimáticos , Esterases , Encéfalo/metabolismo , Cristalografia por Raios X , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Esterases/metabolismo , Via de Sinalização Wnt
5.
J Med Chem ; 65(1): 562-578, 2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-34939789

RESUMO

Notum is a negative regulator of Wnt signaling acting through the hydrolysis of a palmitoleoylate ester, which is required for Wnt activity. Inhibitors of Notum could be of use in diseases where dysfunctional Notum activity is an underlying cause. A docking-based virtual screen (VS) of a large commercial library was used to shortlist 952 compounds for experimental validation as inhibitors of Notum. The VS was successful with 31 compounds having an IC50 < 500 nM. A critical selection process was then applied with two clusters and two singletons (1-4d) selected for hit validation. Optimization of 4d guided by structural biology identified potent inhibitors of Notum activity that restored Wnt/ß-catenin signaling in cell-based models. The [1,2,4]triazolo[4,3-b]pyradizin-3(2H)-one series 4 represent a new chemical class of Notum inhibitors and the first to be discovered by a VS campaign. These results demonstrate the value of VS with well-designed docking models based on X-ray structures.


Assuntos
Hidrolases de Éster Carboxílico/antagonistas & inibidores , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Esterases/antagonistas & inibidores , Animais , Sítios de Ligação , Cristalografia por Raios X , Ensaios de Triagem em Larga Escala , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Simulação de Acoplamento Molecular , Ligação Proteica , Relação Estrutura-Atividade , Via de Sinalização Wnt/efeitos dos fármacos , beta Catenina/efeitos dos fármacos
6.
J Med Chem ; 64(8): 4289-4311, 2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33783220

RESUMO

Regulation of the Wnt signaling pathway is critically important for a number of cellular processes in both development and adult mammalian biology. This Perspective will provide a summary of current and emerging therapeutic opportunities in modulating Wnt signaling, especially through inhibition of Notum carboxylesterase activity. Notum was recently shown to act as a negative regulator of Wnt signaling through the removal of an essential palmitoleate group. Inhibition of Notum activity may represent a new approach to treat disease where aberrant Notum activity has been identified as the underlying cause. Reliable screening technologies are available to identify inhibitors of Notum, and structural studies are accelerating the discovery of new inhibitors. A selection of these hits have been optimized to give fit-for-purpose small molecule inhibitors of Notum. Three noteworthy examples are LP-922056 (26), ABC99 (27), and ARUK3001185 (28), which are complementary chemical tools for exploring the role of Notum in Wnt signaling.


Assuntos
Inibidores Enzimáticos/química , Esterases/antagonistas & inibidores , Via de Sinalização Wnt , Sítios de Ligação , Domínio Catalítico , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Esterases/metabolismo , Humanos , Simulação de Dinâmica Molecular , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos
7.
J Med Chem ; 63(17): 9464-9483, 2020 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-32787107

RESUMO

The Wnt family of proteins are secreted signaling proteins that play key roles in regulating cellular functions. Recently, carboxylesterase Notum was shown to act as a negative regulator of Wnt signaling by mediating the removal of an essential palmitoleate. Here we disclose two new chemical scaffolds that inhibit Notum enzymatic activity. Our approach was to create a fragment library of 250 acids for screening against Notum in a biochemical assay followed by structure determination by X-ray crystallography. Twenty fragments were identified as hits for Notum inhibition, and 14 of these fragments were shown to bind in the palmitoleate pocket of Notum. Optimization of 1-phenylpyrrole 20, guided by structure-based drug design, identified 20z as the most potent compound from this series. Similarly, the optimization of 1-phenylpyrrolidine 8 gave acid 26. This work demonstrates that inhibition of Notum activity can be achieved by small, drug-like molecules possessing favorable in vitro ADME profiles.


Assuntos
Hidrolases de Éster Carboxílico/antagonistas & inibidores , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Pirróis/química , Pirróis/farmacologia , Pirrolidinas/química , Pirrolidinas/farmacologia , Hidrolases de Éster Carboxílico/química , Avaliação Pré-Clínica de Medicamentos , Modelos Moleculares , Conformação Proteica
8.
Bioorg Med Chem Lett ; 30(3): 126751, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31862412

RESUMO

The carboxylesterase Notum is a key negative regulator of the Wnt signaling pathway by mediating the depalmitoleoylation of Wnt proteins. Our objective was to discover potent small molecule inhibitors of Notum suitable for exploring the regulation of Wnt signaling in the central nervous system. Scaffold-hopping from thienopyrimidine acids 1 and 2, supported by X-ray structure determination, identified 3-methylimidazolin-4-one amides 20-24 as potent inhibitors of Notum with activity across three orthogonal assay formats (biochemical, extra-cellular, occupancy). A preferred example 24 demonstrated good stability in mouse microsomes and plasma, and cell permeability in the MDCK-MDR1 assay albeit with modest P-gp mediated efflux. Pharmacokinetic studies with 24 were performed in vivo in mouse with single oral administration of 24 showing good plasma exposure and reasonable CNS penetration. We propose that 24 is a new chemical tool suitable for cellular studies to explore the fundamental biology of Notum.


Assuntos
Acetilesterase/antagonistas & inibidores , Amidas/química , Pirimidinas/química , Acetilesterase/metabolismo , Amidas/metabolismo , Amidas/farmacologia , Animais , Sítios de Ligação , Permeabilidade da Membrana Celular/efeitos dos fármacos , Cristalografia por Raios X , Cães , Meia-Vida , Concentração Inibidora 50 , Células Madin Darby de Rim Canino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microssomos/metabolismo , Simulação de Dinâmica Molecular , Estrutura Terciária de Proteína , Relação Estrutura-Atividade , Via de Sinalização Wnt/efeitos dos fármacos
9.
Methods Mol Biol ; 2041: 301-309, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31646498

RESUMO

This chapter details methods to express and modify ATP-gated P2X receptor channels so that they can be controlled using light. Following expression in cells, a photoswitchable tool compound can be used to covalently modify mutant P2X receptors, as previously demonstrated for homomeric P2X2 and P2X3 receptors, and heteromeric P2X2/3 receptors. Engineered P2X receptors can be rapidly and reversibly opened and closed by different wavelengths of light. Light-activated P2X receptors can be mutated further to impart ATP-insensitivity if required. This method offers control of specific P2X receptor channels with high spatiotemporal precision to study their roles in physiology and pathophysiology.


Assuntos
Trifosfato de Adenosina/metabolismo , Engenharia Genética/métodos , Ativação do Canal Iônico/fisiologia , Luz , Optogenética/métodos , Receptores Purinérgicos P2X2/fisiologia , Receptores Purinérgicos P2X3/fisiologia , Eletrofisiologia , Células HEK293 , Humanos , Ativação do Canal Iônico/efeitos da radiação , Mutação , Receptores Purinérgicos P2X2/química , Receptores Purinérgicos P2X2/efeitos da radiação , Receptores Purinérgicos P2X3/química , Receptores Purinérgicos P2X3/efeitos da radiação
10.
Beilstein J Org Chem ; 15: 2790-2797, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31807213

RESUMO

Background: The carboxylesterase Notum has been shown to act as a key negative regulator of the Wnt signalling pathway by mediating the depalmitoleoylation of Wnt proteins. LP-922056 (1) is an orally active inhibitor of Notum. We are investigating the role of Notum in modulating Wnt signalling in the central nervous system and wished to establish if 1 would serve as a peripherally restricted control. An accessible and improved synthetic route would allow 1 to become more readily available as a chemical tool to explore the fundamental biology of Notum and build target validation to underpin new drug discovery programs. Results: An improved, scalable synthesis of 1 is reported. Key modifications include: (1) the introduction of the C7-cyclopropyl group was most effectively achieved with a Suzuki-Miyaura cross-coupling reaction with MIDA-boronate 11 (5 → 6), and (2) C6 chlorination was performed with 1-chloro-1,2-benziodoxol-3-one (12) (6 → 7) as a mild and selective electrophilic chlorination agent. This 7-step route from 16 has been reliably performed on large scale to produce multigram quantities of 1 in good efficiency and high purity. Pharmacokinetic studies in mouse showed CNS penetration of 1 is very low with a brain/plasma concentration ratio of just 0.01. A small library of amides 17 were prepared from acid 1 to explore if 1 could be modified to deliver a CNS penetrant tool by capping off the acid as an amide. Although significant Notum inhibition activity could be achieved, none of these amides demonstrated the required combination of metabolic stability along with cell permeability without evidence of P-gp mediated efflux. Conclusion: Mouse pharmacokinetic studies demonstrate that 1 is unsuitable for use in models of disease where brain penetration is an essential requirement of the compound but would be an ideal peripherally restricted control. These data will contribute to the understanding of drug levels of 1 to overlay with appropriate in vivo efficacy endpoints, i.e., the PK-PD relationship. The identification of a suitable analogue of 1 (or 17) which combines Notum inhibition with CNS penetration would be a valuable chemical probe for investigating the role of Notum in disease models.

11.
Medchemcomm ; 10(8): 1361-1369, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31534655

RESUMO

NOTUM is a carboxylesterase that has been shown to act by mediating the O-depalmitoleoylation of Wnt proteins resulting in suppression of Wnt signaling. Here, we describe the development of NOTUM inhibitors that restore Wnt signaling for use in in vitro disease models where NOTUM over activity is an underlying cause. A crystallographic fragment screen with NOTUM identified 2-phenoxyacetamide 3 as binding in the palmitoleate pocket with modest inhibition activity (IC50 33 µM). Optimization of hit 3 by SAR studies guided by SBDD identified indazole 38 (IC50 0.032 µM) and isoquinoline 45 (IC50 0.085 µM) as potent inhibitors of NOTUM. The binding of 45 to NOTUM was rationalized through an X-ray co-crystal structure determination which showed a flipped binding orientation compared to 3. However, it was not possible to combine NOTUM inhibition activity with metabolic stability as the majority of the compounds tested were rapidly metabolized in an NADPH-independent manner.

12.
Org Biomol Chem ; 15(46): 9794-9799, 2017 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-29159344

RESUMO

A new efficient chiral synthesis of enantiopure arimoclomol (2) is reported from (R)-(-)-glycidyl nosylate (11) with complete retention of chiral integrity. Off-target pharmacology of arimoclomol (2) was evaluated against a representative set of drug targets and showed modest binding to a few kinases. Pharmacokinetic data was generated in vivo in mouse and showed a low brain : plasma ratio. These studies will be helpful towards a better understanding of the PK-PD relationship of 2 in disease models.


Assuntos
Compostos de Epóxi/química , Proteínas de Choque Térmico/química , Hidroxilaminas/síntese química , Animais , Hidroxilaminas/química , Masculino , Camundongos , Estrutura Molecular , Estereoisomerismo
13.
Chem Commun (Camb) ; 48(95): 11626-8, 2012 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-23097018

RESUMO

Zirconocene dichloride (Cp(2)ZrCl(2)) has been shown to be an effective catalyst for the transamidation of primary amides with amines in cyclohexane at 80 °C in 5-24 hours. For favourable substrates, the reaction can be performed at temperatures as low as 30 °C.


Assuntos
Amidas/química , Aminas/química , Compostos Organometálicos/química , Zircônio/química , Carbamatos/química , Catálise , Cicloexanos/química , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...