Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 242(3): 1238-1256, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38426393

RESUMO

Biosynthesis of flavonoid aglycones and glycosides is well established. However, key genes involved in their catabolism are poorly understood, even though the products of hydrolysis and oxidation play important roles in plant resistance to biotic stress. Here, we report on catabolism of dihydrochalcones (DHCs), the most abundant flavonoids in domesticated apple and wild Malus. Two key genes, BGLU13.1 and PPO05, were identified by activity-directed protein purification. BGLU13.1-A hydrolyzed phlorizin, (the most abundant DHC in domesticated apple) to produce phloretin which was then oxidized by PPO05. The process differed in some wild Malus, where trilobatin (a positional isomer of phlorizin) was mainly oxidized by PPO05. The effects of DHC catabolism on apple resistance to biotic stresses was investigated using transgenic plants. Either directly or indirectly, phlorizin hydrolysis affected resistance to the phytophagous pest two-spotted spider mite, while oxidation of trilobatin was involved in resistance to the biotrophic fungus Podosphaera leucotricha. DHC catabolism did not affect apple resistance to necrotrophic pathogens Valsa mali and Erwinia amylovara. These results suggest that different DHC catabolism pathways play different roles in apple resistance to biotic stresses. The role of DHC catabolism on apple resistance appeared closely related to the mode of invasion/damage used by pathogen/pest.


Assuntos
Malus , Polifenóis , Malus/metabolismo , Florizina/metabolismo , Flavonoides/metabolismo , Estresse Fisiológico/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
2.
J Agric Food Chem ; 72(8): 4433-4447, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38354220

RESUMO

Astringency influences the sensory characteristics and flavor quality of table grapes. We tested the astringency sensory attributes of berries and investigated the concentration of flavan-3-ols/proanthocyanidins (PAs) in skins after the application of the plant growth regulators CPPU and GA3 to the flowers and young berries of the "Summer Black" grape. Our results showed that CPPU and GA3 applications increase sensory astringency perception scores and flavan-3-ol/proanthocyanidin concentrations. Using integrated transcriptomic and proteomic analysis, differentially expressed transcripts and proteins associated with growth regulator treatment were identified, including those for flavonoid biosynthesis that contribute to the changes in sensory astringency levels. Transient overexpression of candidate astringency-related regulatory genes in grape leaves revealed that VvWRKY71, in combination with VvMYBPA1 and VvMYC1, could promote the biosynthesis of proanthocyanidins, while overexpression of VvNAC83 reduced the accumulation of proanthocyanidins. However, in transient promoter studies in Nicotiana benthamiana, VvWRKY71 repressed the promoter of VvMYBPA2, while VvNAC83 had no significant effect on the promoter activity of four PA-related genes, and VvMYBPA1 was shown to activate its own promoter. This study provides new insights into the molecular mechanisms of sensory astringency formation induced by plant growth regulators in grape berries.


Assuntos
Polietilenoglicóis , Poliuretanos , Proantocianidinas , Vitis , Proantocianidinas/metabolismo , Vitis/metabolismo , Frutas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Adstringentes/metabolismo , Proteômica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilação da Expressão Gênica , Genes Reguladores , Regulação da Expressão Gênica de Plantas
3.
Plant J ; 117(3): 924-943, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37902994

RESUMO

Chromoplasts act as a metabolic sink for carotenoids, in which plastoglobules serve as versatile lipoprotein particles. PGs in chloroplasts have been characterized. However, the features of PGs from non-photosynthetic plastids are poorly understood. We found that the development of chromoplast plastoglobules (CPGs) in globular and crystalloid chromoplasts of citrus is associated with alterations in carotenoid storage. Using Nycodenz density gradient ultracentrifugation, an efficient protocol for isolating highly purified CPGs from sweet orange (Citrus sinensis) pulp was established. Forty-four proteins were defined as likely comprise the core proteome of CPGs using comparative proteomics analysis. Lipidome analysis of different chromoplast microcompartments revealed that the nonpolar microenvironment within CPGs was modified by 35 triacylglycerides, two sitosterol esters, and one stigmasterol ester. Manipulation of the CPG-localized gene CsELT1 (esterase/lipase/thioesterase) in citrus calli resulted in increased lipids and carotenoids, which is further evidence that the nonpolar microenvironment of CPGs contributes to carotenoid accumulation and storage in the chromoplasts. This multi-feature analysis of CPGs sheds new light on the role of chromoplasts in carotenoid metabolism, paving the way for manipulating carotenoid content in citrus fruit and other crops.


Assuntos
Citrus sinensis , Citrus , Citrus/genética , Citrus/metabolismo , Multiômica , Carotenoides/metabolismo , Plastídeos/metabolismo , Citrus sinensis/genética , Frutas/genética , Frutas/metabolismo
4.
Plant J ; 117(5): 1413-1431, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38038980

RESUMO

During fruit ripening, polygalacturonases (PGs) are key contributors to the softening process in many species. Apple is a crisp fruit that normally exhibits only minor changes to cell walls and limited fruit softening. Here, we explore the effects of PG overexpression during fruit development using transgenic apple lines overexpressing the ripening-related endo-POLYGALACTURONASE1 gene. MdPG1-overexpressing (PGox) fruit displayed early maturation/ripening with black seeds, conversion of starch to sugars and ethylene production occurring by 80 days after pollination (DAP). PGox fruit exhibited a striking, white-skinned phenotype that was evident from 60 DAP and most likely resulted from increased air spaces and separation of cells in the hypodermis due to degradation of the middle lamellae. Irregularities in the integrity of the epidermis and cuticle were also observed. By 120 DAP, PGox fruit cracked and showed lenticel-associated russeting. Increased cuticular permeability was associated with microcracks in the cuticle around lenticels and was correlated with reduced cortical firmness at all time points and extensive post-harvest water loss from the fruit, resulting in premature shrivelling. Transcriptomic analysis suggested that early maturation was associated with upregulation of genes involved in stress responses, and overexpression of MdPG1 also altered the expression of genes involved in cell wall metabolism (e.g. ß-galactosidase, MD15G1221000) and ethylene biosynthesis (e.g. ACC synthase, MD14G1111500). The results show that upregulation of PG not only has dramatic effects on the structure of the fruit outer cell layers, indirectly affecting water status and turgor, but also has unexpected consequences for fruit development.


Assuntos
Malus , Malus/metabolismo , Frutas/metabolismo , Etilenos/metabolismo , Água/metabolismo , Regulação da Expressão Gênica de Plantas , Parede Celular/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
5.
Plant J ; 118(2): 565-583, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38159243

RESUMO

The biogenesis and differentiation (B&D) of amyloplasts contributes to fruit flavor and color. Here, remodeling of starch granules, thylakoids and plastoglobules was observed during development and ripening in two kiwifruit (Actinidia spp.) cultivars - yellow-fleshed 'Hort16A' and green-fleshed 'Hayward'. A protocol was developed to purify starch-containing plastids with a high degree of intactness, and amyloplast B&D was studied using label-free-based quantitative proteomic analyses in both cultivars. Over 3000 amyloplast-localized proteins were identified, of which >98% were quantified and defined as the kfALP (kiwifruit amyloplast proteome). The kfALP data were validated by Tandem-Mass-Tag (TMT) labeled proteomics in 'Hort16A'. Analysis of the proteomic data across development and ripening revealed: 1) a conserved increase in the abundance of proteins participating in starch synthesis/degradation during both amyloplast B&D; 2) up-regulation of proteins for chlorophyll degradation and of plastoglobule-localized proteins associated with chloroplast breakdown and plastoglobule formation during amyloplast differentiation; 3) constitutive expression of proteins involved in ATP supply and protein import during amyloplast B&D. Interestingly, two different pathways of amyloplast B&D were observed in the two cultivars. In 'Hayward', significant increases in abundance of photosynthetic- and tetrapyrrole metabolism-related proteins were observed, but the opposite trend was observed in 'Hort16A'. In conclusion, analysis of the kfALP provides new insights into the potential mechanisms underlying amyloplast B&D with relevance to key fruit quality traits in contrasting kiwifruit cultivars.


Assuntos
Actinidia , Proteoma , Proteoma/metabolismo , Actinidia/genética , Actinidia/metabolismo , Proteômica/métodos , Frutas/metabolismo , Plastídeos/metabolismo , Amido/metabolismo
6.
Mol Hortic ; 3(1): 9, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37789478

RESUMO

Volatile terpenes are important compounds that influence fruit flavour and aroma of kiwifruit. Terpenes in plants also impact on the floral bouquet and defence against pests and pathogens in leaves and fruit. To better understand the overlapping roles that terpenes may fulfil in plants, a systematic gene, chemical and biochemical analysis of terpenes and terpene synthases (TPS) was undertaken in Red5 kiwifruit (Actinidia spp.). Analysis of the Red5 genome shows it contains only 22 TPS gene models, of which fifteen encode full-length TPS. Thirteen TPS can account for the major terpene volatiles produced in different tissues of Red5 kiwifruit and in response to different stimuli. The small Red5 TPS family displays surprisingly high functional redundancy with five TPS producing linalool/nerolidol. Treatment of leaves and fruit with methyl jasmonate enhanced expression of a subset of defence-related TPS genes and stimulated the release of terpenes. Six TPS genes were induced upon herbivory of leaves by the economically important insect pest Ctenopseustis obliquana (brown-headed leaf roller) and emission, but not accumulation, of (E)- and (Z)-nerolidol was strongly linked to herbivory. Our results provide a framework to understand the overlapping biological and ecological roles of terpenes in Actinidia and other horticultural crops.

7.
Plant J ; 116(5): 1492-1507, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37648286

RESUMO

Dihydrochalcones (DHCs) including phlorizin (phloretin 2'-O-glucoside) and its positional isomer trilobatin (phloretin 4'-O-glucoside) are the most abundant phenylpropanoids in apple (Malus spp.). Transcriptional regulation of DHC production is poorly understood despite their importance in insect- and pathogen-plant interactions in human physiology research and in pharmaceuticals. In this study, segregation in hybrid populations and bulked segregant analysis showed that the synthesis of phlorizin and trilobatin in Malus leaves are both single-gene-controlled traits. Promoter sequences of PGT1 and PGT2, two glycosyltransferase genes involved in DHC glycoside synthesis, were shown to discriminate Malus with different DHC glycoside patterns. Differential PGT1 and PGT2 promoter activities determined DHC glycoside accumulation patterns between genotypes. Two transcription factors containing MYB-like DNA-binding domains were then shown to control DHC glycoside patterns in different tissues, with PRR2L mainly expressed in leaf, fruit, flower, stem, and seed while MYB8L mainly expressed in stem and root. Further hybridizations between specific genotypes demonstrated an absolute requirement for DHC glycoside production in Malus during seed development which explains why no Malus spp. with a null DHC chemotype have been reported.


Assuntos
Malus , Humanos , Malus/genética , Florizina , Fatores de Transcrição/genética , Floretina , Sementes/genética , Glucosídeos , Regulação da Expressão Gênica de Plantas
8.
BMC Plant Biol ; 23(1): 280, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37231379

RESUMO

BACKGROUND: Hops (Humulus lupulus L.) are a dioecious climbing perennial, with the dried mature "cones" (strobili) of the pistillate/female inflorescences being widely used as both a bittering agent and to enhance the flavour of beer. The glandular trichomes of the bract and bracteole flowering structures of the cones produce an abundance of secondary metabolites, such as terpenoids, bitter acids and prenylated phenolics depending on plant genetics, developmental stage and environment. More knowledge is required on the functional and allelic diversity of terpene synthase (TPS) genes responsible for the biosynthesis of volatile terpenes to assist in flavour-directed hop breeding. RESULTS: Major volatile terpene compounds were identified using gas chromatography-mass spectrometry (GC-MS) in the ripe cones of twenty-one hop cultivars grown in New Zealand. All cultivars produced the monoterpene ß-myrcene and the sesquiterpenes α-humulene and ß-caryophyllene, but the quantities varied broadly. Other terpenes were found in large quantities in only a smaller subset of cultivars, e.g. ß-farnesene (in seven cultivars) and α-pinene (in four). In four contrasting cultivars (Wakatu™, Wai-iti™, Nelson Sauvin™, and 'Nugget'), terpene production during cone development was investigated in detail, with concentrations of some of the major terpenes increasing up to 1000-fold during development and reaching maximal levels from 50-60 days after flowering. Utilising the published H. lupulus genome, 87 putative full-length and partial terpene synthase genes were identified. Alleles corresponding to seven TPS genes were amplified from ripe cone cDNA from multiple cultivars and subsequently functionally characterised by transient expression in planta. Alleles of the previously characterised HlSTS1 produced humulene/caryophyllene as the major terpenes. HlRLS alleles produced (R)-(-)-linalool, whilst alleles of two sesquiterpene synthase genes, HlAFS1 and HlAFS2 produced α-farnesene. Alleles of HlMTS1, HlMTS2 and HlTPS1 were inactive in all the hop cultivars studied. CONCLUSIONS: Alleles of four TPS genes were identified and shown to produce key aroma volatiles in ripe hop cones. Multiple expressed but inactive TPS alleles were also identified, suggesting that extensive loss-of-function has occurred during domestication and breeding of hops. Our results can be used to develop hop cultivars with novel/improved terpene profiles using marker-assisted breeding strategies to select for, or against, specific TPS alleles.


Assuntos
Humulus , Humulus/genética , Humulus/metabolismo , Alelos , Melhoramento Vegetal , Terpenos/metabolismo
9.
Plant Physiol ; 190(2): 1100-1116, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-35916752

RESUMO

Volatile esters are key compounds contributing to flavor intensity in commonly consumed fruits including apple (Malus domestica), strawberry (Fragaria spp.), and banana (Musa sapientum). In kiwifruit (Actinidia spp.), ethyl butanoate and other esters have been proposed to contribute fruity, sweet notes to commercial cultivars. Here, we investigated the genetic basis for ester production in Actinidia in an A. chinensis mapping population (AcMPO). A major quantitative trait loci for the production of multiple esters was identified at the high-flavor intensity (HiFI) locus on chromosome 20. This locus co-located with eight tandemly arrayed alcohol acyl transferase genes in the Red5 genome that were expressed in a ripening-specific fashion that corresponded with ester production. Biochemical characterization suggested two genes at the HiFI locus, alcohol acyl transferase 16-b/c (AT16-MPb/c), probably contributed most to the production of ethyl butanoate. A third gene, AT16-MPa, probably contributed more to hexyl butanoate and butyl hexanoate production, two esters that segregated in AcMPO. Sensory analysis of AcMPO indicated that fruit from segregating lines with high ester concentrations were more commonly described as being "fruity" as opposed to "beany". The downregulation of AT16-MPa-c by RNAi reduced ester production in ripe "Hort16A" fruit by >90%. Gas chromatography-olfactometry indicated the loss of the major "fruity" notes contributed by ethyl butanoate. A comparison of unimproved Actinidia germplasm with those of commercial cultivars indicated that the selection of fruit with high concentrations of alkyl esters (but not green note aldehydes) was probably an important selection trait in kiwifruit cultivation. Understanding ester production at the HiFI locus is a critical step toward maintaining and improving flavor intensity in kiwifruit.


Assuntos
Actinidia , Fragaria , Malus , Musa , Actinidia/genética , Aldeídos , Caproatos/análise , Ésteres , Frutas/química , Frutas/genética , Malus/genética
10.
BMC Plant Biol ; 21(1): 411, 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34496770

RESUMO

BACKGROUND: The phytohormone ethylene controls many processes in plant development and acts as a key signaling molecule in response to biotic and abiotic stresses: it is rapidly induced by flooding, wounding, drought, and pathogen attack as well as during abscission and fruit ripening. In kiwifruit (Actinidia spp.), fruit ripening is characterized by two distinct phases: an early phase of system-1 ethylene biosynthesis characterized by absence of autocatalytic ethylene, followed by a late burst of autocatalytic (system-2) ethylene accompanied by aroma production and further ripening. Progress has been made in understanding the transcriptional regulation of kiwifruit fruit ripening but the regulation of system-1 ethylene biosynthesis remains largely unknown. The aim of this work is to better understand the transcriptional regulation of both systems of ethylene biosynthesis in contrasting kiwifruit organs: fruit and leaves. RESULTS: A detailed molecular study in kiwifruit (A. chinensis) revealed that ethylene biosynthesis was regulated differently between leaf and fruit after mechanical wounding. In fruit, wound ethylene biosynthesis was accompanied by transcriptional increases in 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (ACS), ACC oxidase (ACO) and members of the NAC class of transcription factors (TFs). However, in kiwifruit leaves, wound-specific transcriptional increases were largely absent, despite a more rapid induction of ethylene production compared to fruit, suggesting that post-transcriptional control mechanisms in kiwifruit leaves are more important. One ACS member, AcACS1, appears to fulfil a dominant double role; controlling both fruit wound (system-1) and autocatalytic ripening (system-2) ethylene biosynthesis. In kiwifruit, transcriptional regulation of both system-1 and -2 ethylene in fruit appears to be controlled by temporal up-regulation of four NAC (NAM, ATAF1/2, CUC2) TFs (AcNAC1-4) that induce AcACS1 expression by directly binding to the AcACS1 promoter as shown using gel-shift (EMSA) and by activation of the AcACS1 promoter in planta as shown by gene activation assays combined with promoter deletion analysis. CONCLUSIONS: Our results indicate that in kiwifruit the NAC TFs AcNAC2-4 regulate both system-1 and -2 ethylene biosynthesis in fruit during wounding and ripening through control of AcACS1 expression levels but not in leaves where post-transcriptional/translational regulatory mechanisms may prevail.


Assuntos
Actinidia/genética , Etilenos/biossíntese , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Actinidia/metabolismo , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Liases/genética , Liases/metabolismo , Solanum lycopersicum/genética , Filogenia , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo
11.
Plant Signal Behav ; 16(11): 1962657, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34369306

RESUMO

Aroma is a critical factor influencing consumer acceptability of ripe fruit. When fruit are eaten, the aroma travels retronasally from the mouth into the olfactory receptors located in the nose after exhaling. In kiwifruit (Actinidia spp.), terpene volatiles such as α-terpinolene and 1,8-cineole have been shown to contribute to the characteristic aroma of ripe fruit. Notably, 1,8-cineole contributes a key floral/eucalyptus note to the aroma of ripe A. chinensis 'Hort16A' kiwifruit, based on sensory descriptive and discriminant analysis. Emission of α-terpinolene and 1,8-cineole in kiwifruit is induced by ethylene, and production peaks when fruit are at eating ripeness. Two monoterpene synthase TPS-b family genes have been isolated from the fruit of A. arguta and A. chinensis that produce α-terpinolene and 1,8-cineole, respectively. Here we discuss terpene volatiles with respect to fruit aroma and consumer sensory evaluation, analyze the gene structure and conserved motifs of TPS-b genes in published kiwifruit genomes and then construct a transcriptional regulatory network based on Actinidia TPS-b. These data provide further insights into the potential molecular mechanisms underlying signature monoterpene synthesis to improve flavor in kiwifruit.


Assuntos
Actinidia/química , Actinidia/genética , Actinidia/metabolismo , Frutas/metabolismo , Odorantes , Terpenos/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Produtos Agrícolas/química , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Frutas/química , Frutas/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo , Melhoramento Vegetal
12.
Plant Physiol ; 184(2): 738-752, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32732350

RESUMO

Epidemics of obesity and type 2 diabetes drive strong consumer interest in plant-based low-calorie sweeteners. Trilobatin is a sweetener found at high concentrations in the leaves of a range of crabapple (Malus) species, but not in domesticated apple (Malus × domestica) leaves, which contain trilobatin's bitter positional isomer phloridzin. Variation in trilobatin content was mapped to the Trilobatin locus on LG 7 in a segregating population developed from a cross between domesticated apples and crabapples. Phloretin glycosyltransferase2 (PGT2) was identified by activity-directed protein purification and differential gene expression analysis in samples high in trilobatin but low in phloridzin. Markers developed for PGT2 cosegregated strictly with the Trilobatin locus. Biochemical analysis showed PGT2 efficiently catalyzed 4'-o-glycosylation of phloretin to trilobatin as well as 3-hydroxyphloretin to sieboldin. Transient expression of double bond reductase, chalcone synthase, and PGT2 genes reconstituted the apple pathway for trilobatin production in Nicotiana benthamiana Transgenic M. × domestica plants overexpressing PGT2 produced high concentrations of trilobatin in young leaves. Transgenic plants were phenotypically normal, and no differences in disease susceptibility were observed compared to wild-type plants grown under simulated field conditions. Sensory analysis indicated that apple leaf teas from PGT2 transgenics were readily discriminated from control leaf teas and were perceived as significantly sweeter. Identification of PGT2 allows marker-aided selection to be developed to breed apples containing trilobatin, and for high amounts of this natural low-calorie sweetener to be produced via biopharming and metabolic engineering in yeast.


Assuntos
Chalconas/metabolismo , Flavonoides/biossíntese , Malus/metabolismo , Floretina/metabolismo , Polifenóis/biossíntese , Edulcorantes/metabolismo , Glicosiltransferases/metabolismo , Plantas Geneticamente Modificadas
13.
Front Plant Sci ; 11: 964, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32714354

RESUMO

Fruit softening is controlled by hormonal and developmental cues, causing an upregulation of cell wall-associated enzymes that break down the complex sugar matrices in the cell wall. The regulation of this process is complex, with different genotypes demonstrating quite different softening patterns, even when they are closely related. Currently, little is known about the relationship between cell wall structure and the rate of fruit softening. To address this question, the softening of two Actinidia chinensis var. chinensis (kiwifruit) genotypes (a fast 'AC-F' and a slow 'AC-S' softening genotype) was examined using a range of compositional, biochemical, structural, and molecular techniques. Throughout softening, the cell wall structure of the two genotypes was fundamentally different at identical firmness stages. In the hemicellulose domain, xyloglucanase enzyme activity was higher in 'AC-F' at the firm unripe stage, a finding supported by differential expression of xyloglucan transglycosylase/hydrolase genes during softening. In the pectin domain, differences in pectin solubilization and location of methyl-esterified homogalacturonan in the cell wall between 'AC-S' and 'AC-F' were shown. Side chain analyses and molecular weight elution profiles of polyuronides and xyloglucans of cell wall extracts revealed fundamental differences between the genotypes, pointing towards a weakening of the structural integrity of cell walls in the fast softening 'AC-F' genotype even at the firm, unripe stage. As a consequence, the polysaccharides in the cell walls of 'AC-F' may be easier to access and hence more susceptible to enzymatic degradation than in 'AC-S', resulting in faster softening. Together these results suggest that the different rates of softening between 'AC-F' and 'AC-S' are not due to changes in enzyme activities alone, but that fundamental differences in the cell wall structure are likely to influence the rates of softening through differential modification and accessibility of specific cell wall polysaccharides during ripening.

14.
BMC Genomics ; 21(1): 305, 2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-32299363

RESUMO

BACKGROUND: In citrus, genetic improvement via biotechnology is hindered by the obstacle of in vitro regeneration via somatic embryogenesis (SE). Although a few B3 transcription factors are reported to regulate embryogenesis, little is known about the B3 superfamily in citrus, and which members might be involved in SE. RESULTS: Genome-wide sequence analysis identified 72 (CsB3) and 69 (CgB3) putative B3 superfamily members in the genomes of sweet orange (Citrus sinensis, polyembryonic) and pummelo (C. grandis, monoembryonic), respectively. Genome duplication analysis indicated that segmental and tandem duplication events contributed to the expansion of the B3 superfamily in citrus, and that the B3 superfamily evolved under the effect of purifying selection. Phylogenetic relationships were well supported by conserved gene structure and motifs outside the B3 domain, which allowed possible functions to be inferred by comparison with homologous genes from Arabidopsis. Expression analysis identified 23 B3 superfamily members that were expressed during SE in citrus and 17 that may play functional roles at late SE stages. Eight B3 genes were identified that were specific to the genome of polyembryonic sweet orange compared to monoembryonic pummelo. Of these eight B3 genes, CsARF19 was found to be specifically expressed at higher levels in embryogenic callus (EC), implying its possible involvement in EC initiation. CONCLUSIONS: This study provides a genome-wide analysis of the citrus B3 superfamily, including its genome organization, evolutionary features and expression profiles, and identifies specific family members that may be associated with SE.


Assuntos
Citrus/embriologia , Citrus/genética , Família Multigênica , Proteínas de Plantas/genética , Técnicas de Embriogênese Somática de Plantas , Fatores de Transcrição/genética , Arabidopsis/genética , Citrus sinensis/embriologia , Citrus sinensis/genética , Duplicação Gênica , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Estudo de Associação Genômica Ampla , Filogenia , Proteínas de Plantas/classificação , Sintenia , Fatores de Transcrição/classificação
15.
Plant Physiol ; 183(1): 51-66, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32184346

RESUMO

Terpene volatiles are found in many important fruit crops, but their relationship to flavor is poorly understood. Here, we demonstrate using sensory descriptive and discriminant analysis that 1,8-cineole contributes a key floral/eucalyptus note to the aroma of ripe 'Hort16A' kiwifruit (Actinidia chinensis). Two quantitative trait loci (QTLs) for 1,8-cineole production were identified on linkage groups 27 and 29a in a segregating A. chinensis population, with the QTL on LG29a colocating with a complex cluster of putative terpene synthase (TPS)-encoding genes. Transient expression in Nicotiana benthamiana and analysis of recombinant proteins expressed in Escherichia coli showed four genes in the cluster (AcTPS1a-AcTPS1d) encoded functional TPS enzymes, which produced predominantly sabinene, 1,8-cineole, geraniol, and springene, respectively. The terpene profile produced by AcTPS1b closely resembled the terpenes detected in red-fleshed A chinensis AcTPS1b expression correlated with 1,8-cineole content in developing/ripening fruit and also showed a positive correlation with 1,8-cineole content in the mapping population, indicating the basis for segregation is an expression QTL. Transient overexpression of AcTPS1b in Actinidia eriantha fruit confirmed this gene produced 1,8-cineole in Actinidia Structure-function analysis showed AcTPS1a and AcTPS1b are natural variants at key TPS catalytic site residues previously shown to change enzyme specificity in vitro. Together, our results indicate that AcTPS1b is a key gene for production of the signature flavor terpene 1,8-cineole in ripe kiwifruit. Using a sensory-directed strategy for compound identification provides a rational approach for applying marker-aided selection to improving flavor in kiwifruit as well as other fruits.


Assuntos
Actinidia/metabolismo , Alquil e Aril Transferases/metabolismo , Frutas/metabolismo , Terpenos/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Odorantes , Proteínas de Plantas/metabolismo , Locos de Características Quantitativas/genética , Compostos Orgânicos Voláteis/metabolismo
16.
Plant J ; 103(1): 293-307, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32096261

RESUMO

Apples (Malus spp.) accumulate significant quantities of the dihydrochalcone glycoside, phloridzin, whilst pears (Pyrus spp.) do not. To explain this difference, we hypothesized that a metabolic bottleneck in the phenylpropanoid pathway might exist in apple. Expression analysis indicated that transcript levels of early phenylpropanoid pathway genes in apple and pear leaves were similar, except for chalcone isomerase (CHI), which was much lower in apple. Apples also showed very low CHI activity compared with pear. To relieve the bottleneck at CHI, transgenic apple plants overexpressing the Arabidopsis AtCHI gene were produced. Unlike other transgenic apples where phenylpropanoid flux was manipulated, AtCHI overexpression (CHIox) plants were phenotypically indistinguishable from wild-type, except for an increase in red pigmentation in expanding leaves. CHIox plants accumulated slightly increased levels of flavanols and flavan-3-ols in the leaves, but the major change was a 2.8- to 19-fold drop in phloridzin concentrations compared with wild-type. The impact of these phytochemical changes on insect preference was studied using a two-choice leaf assay with the polyphagous apple pest, the two-spotted spider mite (Tetranychus urticae Koch). Transgenic CHIox leaves were more susceptible to herbivory, an effect that could be reversed (complemented) by application of phloridzin to transgenic leaves. Taken together, these findings shed new light on phenylpropanoid biosynthesis in apple and suggest a new physiological role for phloridzin as an antifeedant in leaves.


Assuntos
Liases Intramoleculares/metabolismo , Malus/metabolismo , Florizina/metabolismo , Defesa das Plantas contra Herbivoria , Tetranychidae , Animais , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Flavonóis/metabolismo , Regulação da Expressão Gênica de Plantas , Liases Intramoleculares/fisiologia , Malus/fisiologia , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , Pyrus/metabolismo , Pyrus/fisiologia , Tetranychidae/fisiologia
17.
Plant J ; 100(6): 1148-1162, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31436867

RESUMO

Terpenes are important compounds in plant trophic interactions. A meta-analysis of GC-MS data from a diverse range of apple (Malus × domestica) genotypes revealed that apple fruit produces a range of terpene volatiles, with the predominant terpene being the acyclic branched sesquiterpene (E,E)-α-farnesene. Four quantitative trait loci (QTLs) for α-farnesene production in ripe fruit were identified in a segregating 'Royal Gala' (RG) × 'Granny Smith' (GS) population with one major QTL on linkage group 10 co-locating with the MdAFS1 (α-farnesene synthase-1) gene. Three of the four QTLs were derived from the GS parent, which was consistent with GC-MS analysis of headspace and solvent-extracted terpenes showing that cold-treated GS apples produced higher levels of (E,E)-α-farnesene than RG. Transgenic RG fruit downregulated for MdAFS1 expression produced significantly lower levels of (E,E)-α-farnesene. To evaluate the role of (E,E)-α-farnesene in fungal pathogenesis, MdAFS1 RNA interference transgenic fruit and RG controls were inoculated with three important apple post-harvest pathogens [Colletotrichum acutatum, Penicillium expansum and Neofabraea alba (synonym Phlyctema vagabunda)]. From results obtained over four seasons, we demonstrate that reduced (E,E)-α-farnesene is associated with decreased disease initiation rates of all three pathogens. In each case, the infection rate was significantly reduced 7 days post-inoculation, although the size of successful lesions was comparable with infections on control fruit. These results indicate that (E,E)-α-farnesene production is likely to be an important factor involved in fungal pathogenesis in apple fruit.


Assuntos
Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Malus/genética , Malus/metabolismo , Doenças das Plantas/imunologia , Sesquiterpenos/metabolismo , Colletotrichum/patogenicidade , Resistência à Doença , Regulação para Baixo , Fungos/patogenicidade , Cromatografia Gasosa-Espectrometria de Massas , Ligação Genética , Genótipo , Penicillium/patogenicidade , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Locos de Características Quantitativas , Interferência de RNA/imunologia , Terpenos/metabolismo
18.
J Exp Bot ; 70(21): 6085-6099, 2019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-31408160

RESUMO

In apple (Malus×domestica) fruit, the different layers of the exocarp (cuticle, epidermis, and hypodermis) protect and maintain fruit integrity, and resist the turgor-driven expansion of the underlying thin-walled cortical cells during growth. Using in situ immunolocalization and size exclusion epitope detection chromatography, distinct cell type differences in cell wall composition in the exocarp were revealed during apple fruit development. Epidermal cell walls lacked pectic (1→4)-ß-d-galactan (associated with rigidity), whereas linear (1→5)-α-l-arabinan (associated with flexibility) was exclusively present in the epidermal cell walls in expanding fruit and then appeared in all cell types during ripening. Branched (1→5)-α-l-arabinan was uniformly distributed between cell types. Laser capture microdissection and RNA sequencing (RNA-seq) were used to explore transcriptomic differences controlling cell type-specific wall modification. The RNA-seq data indicate that the control of cell wall composition is achieved through cell-specific gene expression of hydrolases. In epidermal cells, this results in the degradation of galactan side chains by possibly five ß-galactosidases (BGAL2, BGAL7, BGAL10, BGAL11, and BGAL103) and debranching of arabinans by α-arabinofuranosidases AF1 and AF2. Together, these results demonstrate that flexibility and rigidity of the different cell layers in apple fruit during development and ripening are determined, at least in part, by the control of cell wall pectin remodelling.


Assuntos
Parede Celular/metabolismo , Frutas/genética , Regulação da Expressão Gênica de Plantas , Malus/genética , Pectinas/metabolismo , Parede Celular/química , Parede Celular/genética , Epitopos/metabolismo , Frutas/crescimento & desenvolvimento , Galactanos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Malus/crescimento & desenvolvimento , Peso Molecular , Epiderme Vegetal/metabolismo , Polissacarídeos/metabolismo , Solubilidade , Transcriptoma/genética
19.
J Agric Food Chem ; 66(10): 2259-2272, 2018 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-28006900

RESUMO

Phenylpropenes such as eugenol, chavicol, estragole, and anethole contribute to the flavor and aroma of a number of important herbs and spices. They have been shown to function as floral attractants for pollinators and to have antifungal and antimicrobial activities. Phenylpropenes are also detected as free volatiles and sequestered glycosides in a range of economically important fresh fruit species including apple, strawberry, tomato, and grape. Although they contribute a relatively small percentage of total volatiles compared with esters, aldehydes, and alcohols, phenylpropenes have been shown to contribute spicy anise- and clove-like notes to fruit. Phenylpropenes are typically found in fruit throughout development and to reach maximum concentrations in ripe fruit. Genes involved in the biosynthesis of phenylpropenes have been characterized and manipulated in strawberry and apple, which has validated the importance of these compounds to fruit aroma and may help elucidate other functions for phenylpropenes in fruit.


Assuntos
Anisóis/metabolismo , Aromatizantes/metabolismo , Frutas/química , Derivados de Alilbenzenos , Anisóis/química , Aromatizantes/química , Frutas/metabolismo , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/metabolismo
20.
BMC Plant Biol ; 17(1): 86, 2017 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-28486974

RESUMO

BACKGROUND: Unlike in abscission or dehiscence, fruit of kiwifruit Actinidia eriantha develop the ability for peel detachment when they are ripe and soft in the absence of a morphologically identifiable abscission zone. Two closely-related genotypes with contrasting detachment behaviour have been identified. The 'good-peeling' genotype has detachment with clean debonding of cells, and a peel tissue that does not tear. The 'poor-peeling' genotype has poor detachability, with cells that rupture upon debonding, and peel tissue that fragments easily. RESULTS: Structural studies indicated that peel detachability in both genotypes occurred in the outer pericarp beneath the hypodermis. Immunolabelling showed differences in methylesterification of pectin, where the interface of labelling coincided with the location of detachment in the good-peeling genotype, whereas in the poor-peeling genotype, no such interface existed. This zone of difference in methylesterification was enhanced by differential cell wall changes between the peel and outer pericarp tissue. Although both genotypes expressed two polygalacturonase genes, no enzyme activity was detected in the good-peeling genotype, suggesting limited pectin breakdown, keeping cell walls strong without tearing or fragmentation of the peel and flesh upon detachment. Differences in location and amounts of wall-stiffening galactan in the peel of the good-peeling genotype possibly contributed to this phenotype. Hemicellulose-acting transglycosylases were more active in the good-peeling genotype, suggesting an influence on peel flexibility by remodelling their substrates during development of detachability. High xyloglucanase activity in the peel of the good-peeling genotype may contribute by having a strengthening effect on the cellulose-xyloglucan network. CONCLUSIONS: In fruit of A. eriantha, peel detachability is due to the establishment of a zone of discontinuity created by differential cell wall changes in peel and outer pericarp tissues that lead to changes in mechanical properties of the peel. During ripening, the peel becomes flexible and the cells continue to adhere strongly to each other, preventing breakage, whereas the underlying outer pericarp loses cell wall strength as softening proceeds. Together these results reveal a novel and interesting mechanism for enabling cell separation.


Assuntos
Actinidia/fisiologia , Actinidia/citologia , Actinidia/enzimologia , Actinidia/genética , Parede Celular/fisiologia , Esterificação , Frutas/fisiologia , Galactanos/metabolismo , Expressão Gênica , Genes de Plantas , Genótipo , Metilação , Monossacarídeos/metabolismo , Pectinas/metabolismo , Células Vegetais/fisiologia , Polissacarídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...