Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 303(Pt 1): 134922, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35568215

RESUMO

Developing cost-effective and highly effective visible-light-driven photocatalysts for decomposition of organic contaminants has been deliberated as an important and viable strategy for environmental remediation. Herein, MoS2/Bi2WO6 heterostructure photocatalysts were fabricated with excellent visible light absorption performance and efficient electron/hole (e-/h+) separation efficacy. As-prepared all photocatalysts were systematically characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), high resolution TEM, X-ray photoelectron spectroscopy (XPS). Although photocatalytic experiments were examined by UV-vis diffuse reflectance spectroscopy (UV-vis DRS), photoluminescence spectroscopy (PL), and transient photocurrent (I-t). Among all the photocatalysts, that synthesized by using the components 10 mg of Bi2WO6 with 100 mg of MoS2 (denoted as MSBW-10), displayed high photocatalytic performance (96.31%) for tetracycline (TC) under visible light irradiation within 90 min. The kinetic rate constant of the MSBW-10 heterostructure was 5.51 and 6.71 times higher than those of MoS2 and Bi2WO6, respectively. Further, radical trapping experiments revealed that ˙OH radicals and holes were the predominant reactive species involved in the photocatalytic course. The recycle tests revealed the stability of the photocatalyst, which exhibited 91.85% TC removal efficacy without obvious decay even after the fourth cycle. Furthermore, the type-II MoS2/Bi2WO6 heterostructure photocatalyst exhibited a slighter band gap with energy band alignments and enhanced visible-light absorption, separation of charge carriers, and good oxidation/reduction capacities. These deeper insights and synergetic effects can afford a new approach for flourishing novel heterostructure photocatalysts.


Assuntos
Molibdênio , Tetraciclina , Antibacterianos/química , Catálise , Luz , Tetraciclina/química
2.
ACS Appl Mater Interfaces ; 10(45): 39107-39115, 2018 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-30350940

RESUMO

To utilize the potential of small-molecule-based organic solar cells, proper designs of the photoactive materials which result in reasonable performance in a halogen-free solvent system and thickness tolerance over a range are required. One of the best approaches to achieve these requirements is via the molecular engineering of small-molecule electron donors. Here, we have modified a previously reported dithienobenzodithiophene (DTBDT)-based small molecule (SM1) via the dimerization approach, that is, the insertion of an additional DTBDT into the main backbone of the small molecule (SM2). An SM1-based photoactive film showed severe pinhole formation throughout the film when processed with a halogen-free o-xylene solvent. On the other hand, the modified small-molecule SM2 formed an excellent pinhole-free film when processed with the o-xylene solvent. Because of the dimerization of the DTBDT in the SM2 core, highly crystalline films with compact lamellae and an enhanced donor/acceptor interdigitation were formed, and all of these factors led to a high efficiency of 8.64% with chloroform and 8.37% with the o-xylene solvent systems. To the best of our knowledge, this study represents one of the best results with the SM donor and fullerene derivative acceptor materials that have shown the device performance with halogen-free solvents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...