Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genome Biol Evol ; 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37170918

RESUMO

T cells are a type of white blood cell that play a critical role in the immune response against foreign pathogens through a process called T Cell Adaptive Immunity (TCAI). However, the evolution of the genes and nucleotide sequences involved in TCAI is not well understood. To investigate this, we performed comparative studies of gene annotations and genome assemblies of 28 vertebrate species and identified sets of human genes that are involved in TCAI, carcinogenesis, and ageing. We found that these gene sets share interaction pathways which may have contributed to the evolution of longevity in the vertebrate lineage leading to humans. Our human gene age dating analyses revealed that there was rapid origination of genes with TCAI-related functions prior to the Cretaceous eutherian radiation and these new genes mainly encode negative regulators. We identified no new TCAI-related genes after the divergence of placental mammals, but we did detect an extensive number of amino acid substitutions under strong positive selection in recently evolved human immunity genes suggesting they are co-evolving with adaptive immunity. More specifically, we observed that antigen processing and presentation and checkpoint genes are significantly enriched among new genes evolving under positive selection. These observations reveal an evolutionary process of T Cell Adaptive Immunity that were associated with rapid gene duplication in the early stages of vertebrates and subsequent sequence changes in TCAI-related genes. These processes together suggest an early genetic construction of the vertebrate immune system and subsequent molecular adaptation to diverse antigens.

2.
J Mol Evol ; 89(1-2): 95-102, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33486551

RESUMO

Due to their integral roles in oxidative phosphorylation, mitochondrially encoded proteins represent common targets of selection in response to altitudinal hypoxia across high-altitude taxa. While previous studies revealed evidence of positive selection on mitochondrial genomes of high-altitude Phrynocephalus lizards, their conclusions were restricted by out-of-date phylogenies and limited taxonomic sampling. Using topologies derived from both nuclear and mitochondrial DNA phylogenies, we re-assessed the evidence of positive selection on the mitochondrial genomes of high-altitude Phrynocephalus. We sampled representative species from all four main lineages and sequenced the mitochondrial genome of P. maculatus, a putative sister taxon to the high-altitude group. Positive selection was assessed through two widely used branch-site tests: the branch-site model in PAML and BUSTED in HyPhy. No evidence of positive selection on mitochondrial genes was detected on branches leading to two most recent common ancestors of high-altitude species; however, we recovered evidence of positive selection on COX1 on the P. forsythii branch, which represents a reversal from high- to low-elevation environments. A positively selected site therein marked a threonine to valine substitution at position 419. We suggest this bout of selection occurred as the ancestors of P. forsythii re-colonized lower altitude environments north of the Tibetan Plateau. Despite their role in oxidative phosphorylation, we posit that mitochondrial genes are unlikely to have represented historical targets of selection for high-altitude adaptation in Phrynocephalus. Consequently, future studies should address the roles of nuclear genes and differential gene expression.


Assuntos
Genoma Mitocondrial , Lagartos , Altitude , Animais , DNA Mitocondrial/genética , Genoma Mitocondrial/genética , Lagartos/genética , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...