Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 16047, 2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-32994469

RESUMO

Over a 4-year period between 2015 and 2019, in-situ time series measurements of ocean ambient noise over the frequency range 100 Hz to 10 kHz, by an autonomous passive acoustic monitoring system have been made in the Kongsfjorden, Svalbard, Arctic. We characterize the noise due to sea ice melting during winter (December-January). This unique observation reveals loud noise signatures, of the order of 8 dB higher than the background noise, showing the signature of sea ice melting. Such observations are crucial for monitoring sea ice melting, especially during winter, to understand the recent warming of Arctic waters. The anomalous air temperature due to local atmospheric forcing and warming of ocean temperature in the fjord through ocean tunneling, individually or combinedly, is responsible for such sea ice melting. The cyclonic events in the Arctic are responsible for the anomalous atmospheric and ocean conditions, causing sea ice melting in winter.

2.
Environ Monit Assess ; 188(3): 175, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26887314

RESUMO

The Andaman coral reef region experienced mass bleaching events during 1998 and 2010. The purpose of this study is to investigate the role of the El Niño in the coral reef bleaching events of the Andaman region. Both Niño 3.4 and 3 indices were examined to find out the relationship between the mass bleaching events and El Niño, and correlated with sea surface temperature (SST) anomalies in the Andaman Sea. The result shows that abnormal warming and mass bleaching events in the Andaman Sea were seen only during strong El Niño years of 1997-1998 and 2009-2010. The Andaman Sea SST was more elevated and associated with El Niño Modoki (central Pacific El Niño) than conventional El Niño (eastern Pacific El Niño) occurrences. It is suggested that the development of hot spot patterns around the Andaman Islands during May 1998 and April-May 2010 may be attributed to zonal shifts in the Walker circulation driven by El Niño during the corresponding period.


Assuntos
Antozoários/fisiologia , Monitoramento Ambiental , Temperatura Alta , Animais , Baías , Recifes de Corais , El Niño Oscilação Sul , Índia , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...