Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 22562, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34799606

RESUMO

Alkaptonuria (AKU), a rare genetic disorder, is characterized by the accumulation of homogentisic acid (HGA) in organs due to a deficiency in functional levels of the enzyme homogentisate 1,2-dioxygenase (HGD), required for the breakdown of HGA, because of mutations in the HGD gene. Over time, HGA accumulation causes the formation of the ochronotic pigment, a dark deposit that leads to tissue degeneration and organ malfunction. Such behaviour can be observed also in vitro for HGA solutions or HGA-containing biofluids (e.g. urine from AKU patients) upon alkalinisation, although a comparison at the molecular level between the laboratory and the physiological conditions is lacking. Indeed, independently from the conditions, such process is usually explained with the formation of 1,4-benzoquinone acetic acid (BQA) as the product of HGA chemical oxidation, mostly based on structural similarity between HGA and hydroquinone that is known to be oxidized to the corresponding para-benzoquinone. To test such correlation, a comprehensive, comparative investigation on HGA and BQA chemical behaviours was carried out by a combined approach of spectroscopic techniques (UV spectrometry, Nuclear Magnetic Resonance, Electron Paramagnetic Resonance, Dynamic Light Scattering) under acid/base titration both in solution and in biofluids. New insights on the process leading from HGA to ochronotic pigment have been obtained, spotting out the central role of radical species as intermediates not reported so far. Such evidence opens the way for molecular investigation of HGA fate in cells and tissue aiming to find new targets for Alkaptonuria therapy.


Assuntos
Acetatos/urina , Alcaptonúria/urina , Benzoquinonas/urina , Homogentisato 1,2-Dioxigenase/metabolismo , Ácido Homogentísico/urina , Ocronose/metabolismo , Ocronose/urina , Adulto , Idoso , Alcaptonúria/enzimologia , Alcaptonúria/genética , Estudos de Casos e Controles , Difusão Dinâmica da Luz , Espectroscopia de Ressonância de Spin Eletrônica , Feminino , Homogentisato 1,2-Dioxigenase/genética , Humanos , Espectroscopia de Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Mutação , Ocronose/enzimologia , Ocronose/genética , Oxirredução , Espectrofotometria Ultravioleta , Urinálise
2.
RSC Adv ; 11(10): 5529-5536, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35423100

RESUMO

Chitin-active enzymes are of great biotechnological interest due to the wide industrial application of chitinolytic materials. Non-stability and high cost are among limitations that hinder industrial application of soluble enzymes. Here we report the production and characterization of chitooligosaccharides (COS) using the fungal exo-chitinase Chit42 immobilized on magnetic nanoparticles and food-grade chitosan beads with an immobilization yield of about 60% using glutaraldehyde and genipin linkers. The immobilized enzyme gained operational stability with increasing temperature and acidic pH values, especially when using chitosan beads-genipin that retained more than 80% activity at pH 3. Biocatalysts generated COS from colloidal chitin and different chitosan types. The immobilized enzyme showed higher hydrolytic activity than free enzyme on chitosan, and produced COS mixtures with higher variability of size and acetylation degree. In addition, biocatalysts were reusable, easy to handle and to separate from the reaction mixture.

3.
Mater Sci Eng C Mater Biol Appl ; 107: 110271, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31761218

RESUMO

In this paper we report about the preparation, physicochemical and biological characterization of a magneto responsive nanostructured material based on magnetite nanoparticles (NP) coated with hyaluronic acid (HA). A synthetic approach, based on a Cu(I)-catalyzed azide-alkyne 1,3-dipolar cycloaddition "click" reaction between azido-functionalized magnetite NP and a derivative of hyaluronic acid bearing propargylated ferulic acid groups (HA-FA-Pg), was developed to link covalently the polymer layer to the magnetite NP. The functionalization steps of the magnetite NP and their coating with the HA-FA-Pg layer were monitored by Fourier Transform Infrared (FTIR) spectroscopy and Thermal Gravimetric Analysis (TGA) while Dynamic Light Scattering (DLS) and ζ-potential measurements were performed to characterize the aqueous dispersions of the HA-coated magnetite NP. Aggregation and sedimentation processes were investigated also by UV-visible spectroscopy and the dispersions of HA-coated magnetite NP were found significantly more stable than those of bare NP. Magnetization and zero field cooled/field cooled curves revealed that both bare and HA-coated magnetite NP are superparamagnetic at room temperature. Moreover, cytotoxicity studies showed that the coating with HA-FA-Pg significantly reduces the cytotoxicity of the magnetite NP providing the rational basis for the application of the HA-coated magnetite NP as healthcare material.


Assuntos
Ácido Hialurônico/química , Nanopartículas de Magnetita/química , Animais , Sobrevivência Celular/efeitos dos fármacos , Química Click , Coloides/química , Ácidos Cumáricos/química , Nanopartículas de Magnetita/toxicidade , Camundongos , Células NIH 3T3 , Polímeros/química
4.
Gels ; 2(4)2016 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-30674160

RESUMO

Poly(N-isopropylacrylamide) (PNIPAM) hydrogels containing carboxymethylcellulose (CMC) and CMC/Fe3O4 nanoparticles were prepared. Free-radical polymerization with BIS as cross-linker was used to synthesize the hydrogels. The morphology at the microscopic scale of these materials was investigated using field emission scanning electron microscopy (FESEM). The images show that CMC in the PNIPAM hydrogels induces the formation of a honeycomb structure. This surface morphology was not observed for pure PNIPAM hydrogels prepared under similar conditions. The equilibrium swelling degree of the PNIPAM/CMC hydrogels (5200%) is much larger than that of the pure PNIPAM hydrogels (2500%). The water retention of PNIPAM/CMC hydrogels above the volume phase transition temperature is strongly reduced compared to that of pure PNIPAM hydrogel. Both PNIPAM/Fe3O4 and PNIPAM/CMC/Fe3O4 hydrogels exhibit a superparamagnetic behavior, but the blocking temperature (104 K) of the former is higher than that of the latter (83 K).

5.
Gels ; 1(1): 3-23, 2015 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-30674162

RESUMO

Polysaccharide-based hydrogels are very promising materials for a wide range of medical applications, ranging from tissue engineering to controlled drug delivery for local therapy. The most interesting property of this class of materials is the ability to be injected without any alteration of their chemical, mechanical and biological properties, by taking advantage of their thixotropic behavior. It is possible to modulate the rheological and chemical-physical properties of polysaccharide hydrogels by varying the cross-linking agents and exploiting their thixotropic behavior. We present here an overview of our synthetic strategies and applications of innovative polysaccharide-based hydrogels: hyaluronan-based hydrogel and new derivatives of carboxymethylcellulose have been used as matrices in the field of tissue engineering; while guar gum-based hydrogel and hybrid magnetic hydrogels, have been used as promising systems for targeted controlled drug release. Moreover, a new class of materials, interpenetrating hydrogels (IPH), have been obtained by mixing various native thixotropic hydrogels.

6.
Gels ; 1(1): 24-43, 2015 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-30674163

RESUMO

The chemical, biological and physical properties of carboxymethylcellulose (CMC) hydrogels with silanized magnetite (Fe3O4) nanoparticles (NPs) as cross-linker were investigated and compared with the analogous hydrogel obtained by using 1,3-diaminopropane (DAP) as cross-linker. The magnetic hydrogel was characterized from the chemical point of view by FT-IR, whereas the morphology of the hydrogel was investigated by FESEM and STEM. The water uptake and rheological measurements reveal how much the swelling and mechanical properties change when CMC is cross-linked with silanized magnetite NPs instead of with DAP. As far as the biological properties, the hybrid hydrogel neither exerts any adverse effect nor any alteration on the cells. The magnetic hydrogels show magnetic hysteresis at 2.5 K as well as at 300 K. Magnetic measurements show that the saturation magnetization, remanent magnetization and coercive field of the NPs are not influenced significantly by the silanization treatment. The magnetic hydrogel was tested as controlled drug delivery system. The release of DOXO from the hydrogel is significantly enhanced by exposing it to an alternating magnetic field. Under our experimental conditions (2 mT and 40 kHz), no temperature increase of the hydrogel was measured, testifying that the mechanism for the enhancement of drug release under the AMF involves the twisting of the polymeric chains. A static magnetic field (0.5 T) does not influence the drug release from the hydrogel, compared with that without magnetic field.

7.
Sci Rep ; 4: 4627, 2014 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-24717357

RESUMO

Substrate engineering is a key factor in the synthesis of new complex materials. The substrate surface has to be conditioned in order to minimize the energy threshold for the formation of the desired phase or to enhance the catalytic activity of the substrate. The mechanism of the substrate activity, especially of technologically relevant oxide surfaces, is poorly understood. Here we design and synthesize several distinct and stable CeO2 (001) surface reconstructions which are used to grow epitaxial films of the high-temperature superconductor YBa2Cu3O7. The film grown on the substrate having the longest, fourfold period, reconstruction exhibits a twofold increase in performance over surfaces with shorter period reconstructions. This is explained by the crossover between the nucleation site dimensions and the period of the surface reconstruction. This result opens a new avenue for catalysis mediated solid state synthesis.

8.
J Phys Condens Matter ; 24(44): 445005, 2012 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-23018382

RESUMO

Ultrathin films of TiO(2) were grown on Ag(100) by evaporation of titanium in the presence of O(2) at a pressure in the 10(-4) Pa range and annealing at 770 K. The composition of the deposited films was monitored by XPS and LEIS. The morphology at the nanometric scale of the TiO(2) films and their crystallographic structure were investigated by means of STM, LEED and XPD. Above the monolayer coverage (at which the oxide film has a lepidocrocite-like structure), STM images show the formation of multilayer islands with a distribution of heights. XPD results indicate that these oxide islands have the rutile (110) structure and are epitaxially oriented with the sides of the oxide unit cell parallel to those of the substrate unit cell. The results of the DFT calculations justify the 3D growth of rutile (110) on Ag(100). The calculated strain energy required to match the metal substrate can explain the incommensurate growth of the overlayer in the direction of the long side of the oxide unit cell. The results of the calculations indicate that a commensurate growth of rutile (110) may be possible along the short side of the oxide unit cell, taking into account the relatively small strain energy to fit the lattice parameter of the substrate. The DFT calculations predict a considerable increase of the work function upon deposition of titania films on Ag(100), which can be attributed to a charge transfer from the metal to the 3d Ti empty states.

9.
Biomacromolecules ; 12(4): 1243-9, 2011 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-21401022

RESUMO

In this study, we investigated the physicochemical and biological properties of naked and coated titania nanoparticles. The aim of this study was to verify the effect of the biopolymer coatings (hyaluronic acid and its biphosphonated derivative) and the role of protein adsorption from a cell culture medium on the citotoxicity of nanoparticles. Infrared spectroscopy (FT-IR) was used to investigate the interactions between the nanoparticles and the polysaccharides. The ζ potentials and the average hydrodynamic diameters of naked and coated nanoparticles dispersed in deionized water, medium with and without fetal bovine serum, were measured by means of dynamic light scattering (DLS). FT-IR and DLS measurements indicate that serum proteins are adsorbed on the NPs' surface. The biological tests show that naked and coated TiO(2) NPs do not induce an acute toxic effect on fibroblast cell cultures. This result shows that protein adsorption on NPs is an important factor in explaining the effect of NPs on cellular behavior.


Assuntos
Proteínas Sanguíneas/fisiologia , Nanopartículas Metálicas , Titânio/química , Adsorção , Meios de Cultura , Eletroforese em Gel de Poliacrilamida , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Espectroscopia de Infravermelho com Transformada de Fourier
10.
Phys Chem Chem Phys ; 12(37): 11587-95, 2010 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-20676456

RESUMO

Titanium oxide ultrathin films were grown on Ag(100) by evaporation of titanium in an O(2) atmosphere. The growth of the oxide films was monitored by means of XPS. The Ti2p XPS spectra indicate the formation of films with a TiO(2) stoichiometry in the whole range of coverages studied here. The STM results show that titania films appear to grow as islands of uniform thickness up to the completion of the first layer. Up to the formation of one complete monolayer, a (5 × 1) LEED pattern is observed. This pattern can be interpreted as a coincidence mesh and the lattice parameters of the oxide layer are very close to those of TiO(2) films with a lepidocrocite-like structure. However, the STM images show a long-range coincidence between the periodicity of the oxide film and that of the substrate along the short side of the oxide unit cell revealing that this lattice parameter is not exactly equal to that of the substrate. Above the monolayer coverage, additional spots become visible in the LEED pattern which can be interpreted in terms of the unit cell of rutile (110). The structural determination was carried out for the monolayer of titania by means of XPD and LEED intensity analysis. The results of these investigations demonstrate that the titania monolayer has a lepidocrocite-like structure. The DFT calculations carried out for the titania monolayer show the higher stability of the lepidocrocite structure with respect to other structures derived from crystallographic planes of bulk TiO(2) phases. Moreover, these calculations allow us to determine the oxide-substrate interface energy as well as to clarify the effect of the strain on the stability of the oxide layer.

11.
Inorg Chem ; 48(21): 10126-37, 2009 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-19799412

RESUMO

The reaction between Pt(3)(mu-PBu(t)(2))(3)(CO)(2)Cl (2) and ethynylferrocene, in the presence of catalytic amounts of CuI, gives Pt(3)(mu-PBu(t)(2))(3)(CO)(2)C[triple bond]CFc (1), characterized by X-ray crystallography and representing a rare example of the sigma-coordination of an alkynyl moiety to a cluster unit. In a dichloromethane (CH(2)Cl(2)) solution, compound 1 undergoes three consecutive one-electron oxidations, the first of which is assigned to the ferrocene-centered Fe(II)/Fe(III) redox couple. Spectroelectrochemistry, carried out on a solution of 1, shows the presence of a broad band in the near-IR region, growing after the electrochemical oxidation, preliminarily associated with a metal-to-metal charge transfer toward the Fe(III) ion of the ferrocenium unit. Density functional theory (DFT) has been employed to analyze the ground- and excited-state properties of 1 and 1(+), both in the gas phase and in a CH(2)Cl(2) solution. Vertical excitation energies have been computed by the B3LYP hybrid functional in the framework of the time-dependent DFT approach, and the polarizable continuum model has been used to assess the solvent effect. Our results show that taking into account the medium effects together with the choice of an appropriate molecular model is crucial to correctly reproducing the excitation spectra of such compounds. Indeed, the nature of the substituents on P atoms has been revealed to have a key role in the quality of the calculated spectra.

12.
Nanotechnology ; 20(1): 015703, 2009 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-19417262

RESUMO

We have developed a method to bind titania nanoparticles onto hyaluronic films (HA) photoimmobilized on silanized glass. Titania nanoparticles were deposited on the HA films from commercially available dispersions by casting and dip-coating methods at various pH values. XPS was used to monitor the deposition of titania and to estimate the surface coverage of the nanoparticles. The topography of the titania-modified HA films was investigated by means of AFM. XPS results indicate that the titania surface coverage depends on the preparation method and the pH of the dispersion. We found that the maximum titania nanoparticle surface coverage was obtained by the casting method with the formation of aggregates and multilayers of particles. The titania surface coverage for the surfaces prepared by the dip-coating method is pH-dependent. The surfaces prepared at pH 2 show a surface coverage of 65% and a rather uniform distribution of particles. We found that titania nanoparticles are anchored in a stable way to the HA substrate in a phosphate buffer solution (PBS) and that the interaction between the HA and the titania is through the carbonyl group of carboxylates and amidic groups of the polymer. AFM images clearly show that titania nanoparticles are uniformly distributed over the HA films. By measuring the average diameter and the average height of the nanoparticles deposited on HA films it appears that the particles are partially embedded in the polysaccharide films. The results of the study on the photobleaching of methylene blue indicate that the characteristic photocatalytic activity of titania is maintained when the nanoparticles are anchored to the HA substrate.

13.
Biomacromolecules ; 8(11): 3531-9, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17939717

RESUMO

The aim of this study was to find a novel simple method to obtain polysaccharide ultrathin layers on solid substrates to investigate the interaction between the surface and the biological environment. A Hyaluronan (Hyal) monolayer with a well-defined chemistry was obtained by exploiting the capability of organosilanes to spontaneously adhere onto glass surfaces. A silane alkylic chain was conjugated with Hyal, and the derivatized polysaccharide was allowed to spontaneously adhere onto a glass surface. The elemental analysis of the modified polysaccharide demonstrated that one out of five disaccharide units was conjugated with the alkyl silane chain, corresponding to a substitution degree of the carboxylate groups of approximately 20%. The film of the modified polysaccharide was characterized by means of X-ray photoelectron spectroscopy (XPS), water contact angle, and atomic force microscopy (AFM) measurements. XPS analysis demonstrated that we obtained a Hyal layer with a thickness of about 2.0 nm corresponding to a Hyal monolayer. The Hyal-coated surfaces appeared to be rather smooth and highly hydrophilic and showed significant resistance to nonspecific cell adhesion.


Assuntos
Ácido Hialurônico/química , Adesão Celular/efeitos dos fármacos , Células Cultivadas , Humanos , Ácido Hialurônico/farmacologia , Ácido Hialurônico/ultraestrutura , Microscopia de Força Atômica , Estrutura Molecular , Dióxido de Silício/química , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...