Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(16)2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39204544

RESUMO

Additive manufacturing presents promising potential as a sustainable processing technology, notably through integrating post-consumer recycled polymers into production. This study investigated the recycling of high-density polyethylene (rHDPE) into 3D printing filament, achieved by the following optimal extrusion parameters: 180 °C temperature, 7 rpm speed, and 10% glass powder addition. The properties of the developed rHDPE filament were compared with those of commonly used FDM filaments such as acrylonitrile butadiene styrene (ABS) and polylactic acid (PLA) to benchmark the performance of rHDPE against well-established materials in the 3D printing industry, providing a practical perspective for potential users. The resulting filament boasted an average tensile strength of 25.52 MPa, slightly exceeding ABS (25.41 MPa) and comparable to PLA (28.55 MPa). Despite diameter fluctuations, the filament proved usable in 3D printing. Mechanical tests compared the rHPDE filament 3D printed objects with ABS and PLA, showing lower strength but exceptional ductility and flexibility, along with superior sound absorption. A life cycle analysis underscored the sustainability advantages of rHDPE, reducing environmental impact compared to conventional disposal methods. While rHDPE falls behind in mechanical strength against virgin filaments, its unique attributes and sustainability position it as a valuable option for 3D printing, showcasing recycled materials' potential in sustainable innovation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA