Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Anat Rec (Hoboken) ; 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39192616

RESUMO

In this article, we document the widespread presence of bony ridges in the neural canals of non-avian dinosaurs, including a wide diversity of sauropods, two theropods, a thyreophoran, and a hadrosaur. These structures are present only in the caudal vertebrae. They are anteroposteriorly elongate, found on the lateral walls of the canal, and vary in size and position both taxonomically and serially. Similar bony projections into the neural canal have been identified in extant teleosts, dipnoans, and urodelans, in which they are recognized as bony spinal cord supports. In most non-mammals, the dura mater that surrounds the spinal cord is fused to the periosteum of the neural canal, and the denticulate ligaments that support the spinal cord can pass through the dura and periosteum to anchor directly to bone. The function of these structures in dinosaurs remains uncertain, but in sauropods they might have stabilized the spinal cord during bilateral movement of the tail and use of the tail as a weapon. Of broader significance, this study emphasizes that important new discoveries at the gross anatomical level can continue to be made in part by closely examining previously overlooked features of known specimens.

2.
Nature ; 630(8017): 671-676, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38867039

RESUMO

The subpectoral diverticulum (SPD) is an extension of the respiratory system in birds that is located between the primary muscles responsible for flapping the wing1,2. Here we survey the pulmonary apparatus in 68 avian species, and show that the SPD was present in virtually all of the soaring taxa investigated but absent in non-soarers. We find that this structure evolved independently with soaring flight at least seven times, which indicates that the diverticulum might have a functional and adaptive relationship with this flight style. Using the soaring hawks Buteo jamaicensis and Buteo swainsoni as models, we show that the SPD is not integral for ventilation, that an inflated SPD can increase the moment arm of cranial parts of the pectoralis, and that pectoralis muscle fascicles are significantly shorter in soaring hawks than in non-soaring birds. This coupling of an SPD-mediated increase in pectoralis leverage with force-specialized muscle architecture produces a pneumatic system that is adapted for the isometric contractile conditions expected in soaring flight. The discovery of a mechanical role for the respiratory system in avian locomotion underscores the functional complexity and heterogeneity of this organ system, and suggests that pulmonary diverticula are likely to have other undiscovered secondary functions. These data provide a mechanistic explanation for the repeated appearance of the SPD in soaring lineages and show that the respiratory system can be co-opted to provide biomechanical solutions to the challenges of flight and thereby influence the evolution of avian volancy.


Assuntos
Voo Animal , Falcões , Respiração , Sistema Respiratório , Asas de Animais , Animais , Evolução Biológica , Fenômenos Biomecânicos/fisiologia , Voo Animal/fisiologia , Falcões/anatomia & histologia , Falcões/classificação , Falcões/fisiologia , Pulmão/anatomia & histologia , Pulmão/fisiologia , Modelos Biológicos , Músculo Esquelético/anatomia & histologia , Músculo Esquelético/fisiologia , Sistema Respiratório/anatomia & histologia , Asas de Animais/fisiologia , Asas de Animais/anatomia & histologia , Masculino , Feminino
3.
Anat Rec (Hoboken) ; 306(1): 29-50, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35338748

RESUMO

Avian respiratory systems are comprised of rigid lungs connected to a hierarchically organized network of large, regional air sacs, and small diverticula that branch from them. Paramedullary diverticula are those that rest in contact with the spinal cord, and frequently invade the vertebral canal. Here, we review the historical study of these structures and provide the most diverse survey to date of paramedullary diverticula in Aves, consisting of observations from 29 taxa and 17 major clades. These extensions of the respiratory system are present in nearly all birds included in the study, with the exception of falconiforms, gaviiforms, podicipediforms, and piciforms. When present, they share connections most commonly with the intertransverse and supravertebral diverticula, but also sometimes with diverticula arising directly from the lungs and other small, more posterior diverticula. Additionally, we observed much greater morphological diversity of paramedullary airways than previously known. These diverticula may be present as one to four separate tubes (dorsal, lateral, or ventral to the spinal cord), or as a single large structure that partially or wholly encircles the spinal cord. Across taxa, paramedullary diverticula are largest and most frequently present in the cervical region, becoming smaller and increasingly absent moving posteriorly. Finally, we observe two osteological correlates of paramedullary diverticula (pneumatic foramina and pocked texturing inside the vertebral canal) that can be used to infer the presence of these structures in extinct taxa with similar respiratory systems.


Assuntos
Osteologia , Tomografia
4.
PeerJ ; 9: e12160, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34703663

RESUMO

Bone histology of crown-group birds is a research topic of great interest, permitting insight into the evolution of remarkably high growth rates in this clade and variation across the altricial-precocial spectrum. In this study, we describe microanatomical characteristics of the humerus and femur in partial growth series from 14 crown group birds representing ten major clades (Struthioniformes, Galliformes, Apodiformes, Columbiformes, Charadriiformes, Accipitriformes, Strigiformes, Psittaciformes, Falconiformes, and Passeriformes). Our goals were to: (1) describe the microanatomy of each individual; (2) make inter-and intra-taxonomic comparisons; (3) assess patterns that correspond with developmental mode; and (4) to further parse out phylogenetic, developmental, and functional constraints on avian osteological development. Across taxa, the femoral and humeral tissue of neonates can be broadly characterized as highly-vascularized, disorganized woven bone with great variation in cortical thickness (inter-and intrataxonomically, within an individual specimen, and within a single section). The tissue of precocial chicks is relatively more mature at hatching than in altricial, but other categories along the developmental spectrum were less easy to distinguish, thus we were unable to identify a definitive histological proxy for developmental mode. We did not find evidence to support hypotheses that precocial chicks exclusively have thicker cortices and more mature bone in the femur than the humerus at time of hatching; instead, this is a characteristic of nearly all taxa (regardless of developmental mode), suggesting deep evolutionary origins and the effects of developmental channeling. Bone tissue in adults exhibited unexpected variation, corresponding to differences in body size. Large-bodied birds have cortices of fibrolamellar bone, but organization of tissue increases and vascularity decreases with diminishing body size. The outer circumferential layer (OCL) also appears at earlier growth stages in small-bodied taxa. Thus, while the OCL is indicative of a cessation of appositional growth it is not always indicative of cortical maturity (that is, maximum organization of bony tissue for a given taxon). Small size is achieved by truncating the period of fast growth; manipulation of the timing of offset of bone growth is therefore an important factor in changing growth trajectories to alter adult body size.

5.
PeerJ ; 6: e5910, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30479894

RESUMO

The most complete known North American enantiornithine was collected in 1992 but never formally described. The so-called "Kaiparowits avisaurid" remains one of the most exceptional Late Cretaceous enantiornithine fossils. We recognize this specimen as a new taxon, Mirarce eatoni (gen. et sp. nov.), and provide a complete anatomical description. We maintain that the specimen is referable to the Avisauridae, a clade previously only known in North America from isolated tarsometatarsi. Information from this specimen helps to clarify evolutionary trends within the Enantiornithes. Its large body size supports previously observed trends toward larger body mass in the Late Cretaceous. However, trends toward increased fusion of compound elements across the clade as a whole are weak compared to the Ornithuromorpha. The new specimen reveals for the first time the presence of remige papillae in the enantiornithines, indicating this feature was evolved in parallel to dromaeosaurids and derived ornithuromorphs. Although morphology of the pygostyle and (to a lesser degree) the coracoid and manus appear to remain fairly static during the 65 million years plus of enantiornithine evolution, by the end of the Mesozoic at least some enantiornithine birds had evolved several features convergent with the Neornithes including a deeply keeled sternum, a narrow furcula with a short hypocleidium, and ulnar quill knobs-all features that indicate refinement of the flight apparatus and increased aerial abilities. We conduct the first cladistic analysis to include all purported avisuarid enantiornithines, recovering an Avisauridae consisting of a dichotomy between North and South American taxa. Based on morphological observations and supported by cladistic analysis, we demonstrate Avisaurus to be paraphyletic and erect a new genus for "A. gloriae," Gettyia gen. nov.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA