Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
medRxiv ; 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38978680

RESUMO

Lassa fever is a zoonotic disease identified by the World Health Organization (WHO) as having pandemic potential. This study estimates the health-economic burden of Lassa fever throughout West Africa and projects impacts of a series of vaccination campaigns. We also model the emergence of "Lassa-X" - a hypothetical pandemic Lassa virus variant - and project impacts of achieving 100 Days Mission vaccination targets. Our model predicted 2.7M (95% uncertainty interval: 2.1M-3.4M) Lassa virus infections annually, resulting over ten years in 2.0M (793.8K-3.9M) disability-adjusted life years (DALYs). The most effective vaccination strategy was a population-wide preventive campaign primarily targeting WHO-classified "endemic" districts. Under conservative vaccine efficacy assumptions, this campaign averted $20.1M ($8.2M-$39.0M) in lost DALY value and $128.2M ($67.2M-$231.9M) in societal costs (International dollars 2021). Reactive vaccination in response to local outbreaks averted just one-tenth the health-economic burden of preventive campaigns. In the event of Lassa-X emerging, spreading throughout West Africa and causing approximately 1.2M DALYs within two years, 100 Days Mission vaccination averted 22% of DALYs given a vaccine 70% effective against disease, and 74% of DALYs given a vaccine 70% effective against both infection and disease. These findings suggest how vaccination could alleviate Lassa fever's burden and assist in pandemic preparedness.

2.
GigaByte ; 2023: gigabyte100, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38090598

RESUMO

Rodents, a globally distributed and ecologically important mammalian order, serve as hosts for various zoonotic pathogens. However, sampling of rodents and their pathogens suffers from taxonomic and spatial biases. This affects consolidated databases, such as IUCN and GBIF, limiting inference regarding the spillover hazard of zoonotic pathogens into human populations. Here, we synthesised data from 127 rodent trapping studies conducted in 14 West African countries between 1964 and 2022. We combined occurrence data with pathogen screening results to produce a dataset containing detection/non-detection data for 65,628 individual small mammals identified to the species level from at least 1,611 trapping sites. We also included 32 microorganisms, identified to the species or genus levels, that are known or potential pathogens. The dataset is formatted to Darwin Core Standard with associated metadata. This dataset can mitigate spatial and taxonomic biases of current databases, improving understanding of rodent-associated zoonotic pathogen spillover across West Africa.

3.
PLoS Negl Trop Dis ; 17(1): e0010772, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36689474

RESUMO

Rodents, a diverse, globally distributed and ecologically important order of mammals are nevertheless important reservoirs of known and novel zoonotic pathogens. Ongoing anthropogenic land use change is altering these species' abundance and distribution, which among zoonotic host species may increase the risk of zoonoses spillover events. A better understanding of the current distribution of rodent species is required to guide attempts to mitigate against potentially increased zoonotic disease hazard and risk. However, available species distribution and host-pathogen association datasets (e.g. IUCN, GBIF, CLOVER) are often taxonomically and spatially biased. Here, we synthesise data from West Africa from 127 rodent trapping studies, published between 1964-2022, as an additional source of information to characterise the range and presence of rodent species and identify the subgroup of species that are potential or known pathogen hosts. We identify that these rodent trapping studies, although biased towards human dominated landscapes across West Africa, can usefully complement current rodent species distribution datasets and we calculate the discrepancies between these datasets. For five regionally important zoonotic pathogens (Arenaviridae spp., Borrelia spp., Lassa mammarenavirus, Leptospira spp. and Toxoplasma gondii), we identify host-pathogen associations that have not been previously reported in host-association datasets. Finally, for these five pathogen groups, we find that the proportion of a rodent hosts range that have been sampled remains small with geographic clustering. A priority should be to sample rodent hosts across a greater geographic range to better characterise current and future risk of zoonotic spillover events. In the interim, studies of spatial pathogen risk informed by rodent distributions must incorporate a measure of the current sampling biases. The current synthesis of contextually rich rodent trapping data enriches available information from IUCN, GBIF and CLOVER which can support a more complete understanding of the hazard of zoonotic spillover events.


Assuntos
Roedores , Animais , Humanos , Fonte de Informação , Zoonoses/epidemiologia , Mamíferos , Especificidade de Hospedeiro
4.
Nat Commun ; 12(1): 5759, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34599162

RESUMO

Lassa fever is a longstanding public health concern in West Africa. Recent molecular studies have confirmed the fundamental role of the rodent host (Mastomys natalensis) in driving human infections, but control and prevention efforts remain hampered by a limited baseline understanding of the disease's true incidence, geographical distribution and underlying drivers. Here, we show that Lassa fever occurrence and incidence is influenced by climate, poverty, agriculture and urbanisation factors. However, heterogeneous reporting processes and diagnostic laboratory access also appear to be important drivers of the patchy distribution of observed disease incidence. Using spatiotemporal predictive models we show that including climatic variability added retrospective predictive value over a baseline model (11% decrease in out-of-sample predictive error). However, predictions for 2020 show that a climate-driven model performs similarly overall to the baseline model. Overall, with ongoing improvements in surveillance there may be potential for forecasting Lassa fever incidence to inform health planning.


Assuntos
Reservatórios de Doenças/virologia , Monitoramento Epidemiológico , Febre Lassa/epidemiologia , Vírus Lassa/patogenicidade , Murinae/virologia , Animais , Clima , Geografia , Humanos , Incidência , Febre Lassa/transmissão , Febre Lassa/virologia , Nigéria/epidemiologia , Pobreza , Estudos Retrospectivos , Análise Espaço-Temporal , Urbanização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...