Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 15892, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987409

RESUMO

Addressing an ever-increasing demand for graphene in recent years, simple, accessible, and effective graphene synthesis methods are essential. One of such methods is to use a highly oriented pyrolytic graphite (HOPG) to perform an electrochemical exfoliation. While this is one of the simplest and most cost-effective methods, the limited availability and price of HOPG hinders its usage. Our study proposed a simple and economical electrochemical exfoliation of pencil lead, producing graphene with properties comparable to that produced from HOPG. The electrical properties are determined by depositing graphene onto a screen-printed electrode. Graphene from pencil leads can achieve an electrical resistance as low as 1.86 kΩ, marking over 80% improvement in electrical performance compared to bare electrodes. This finding provides an alternative for the synthesis of graphene, increasing its availability and the cost-effectiveness as well as contributing towards a potential commercialization of the method in the future.

2.
Nanomaterials (Basel) ; 12(3)2022 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-35159902

RESUMO

Biofilm-associated infections caused by an accumulation of micro-organisms and pathogens significantly impact the environment, health risks, and the global economy. Currently, a non-biocide-releasing superhydrophobic surface is a potential solution for antibacterial purposes. This research demonstrated a well-designed robust polydimethylsiloxane (PDMS) micro-structure and a flame treatment process with improved hydrophobicity and bacterial anti-adhesion properties. After the flame treatment at 700 ± 20 °C for 15 s, unique flower-petal re-entrant nano-structures were formed on pillars (PIL-F, width: 1.87 ± 0.30 µm, height: 7.76 ± 0.13 µm, aspect ratio (A.R.): 4.14) and circular rings with eight stripe supporters (C-RESS-F, width: 0.50 ± 0.04 µm, height: 3.55 ± 0.11 µm, A.R.: 7.10) PDMS micro-patterns. The water contact angle (WCA) and ethylene glycol contact angle (EGCA) of flame-treated flat-PDMS (FLT-F), PIL-F, and C-RESS-F patterns were (133.9 ± 3.8°, 128.6 ± 5.3°), (156.1 ± 1.5°, 151.5 ± 2.1°), and (146.3 ± 3.5°, 150.7 ± 1.8°), respectively. The Escherichia coli adhesion on the C-RESS-F micro-pattern with hydrophobicity and superoleophobicity was 42.6%, 31.8%, and 2.9% less than FLT-F, PIL-F, and Teflon surfaces. Therefore, the flame-treated C-RESS-F pattern is one of the promising bacterial anti-adhesion micro-structures in practical utilization for various applications.

3.
Micromachines (Basel) ; 14(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36677084

RESUMO

Dynamic gut-on-a-chip platform allows better recreation of the intestinal environment in vitro compared to the traditional static cell culture. However, the underlying mechanism is still not fully discovered. In this study, the shear stress behavior in a gut-on-a-chip device with porous membrane subjected to peristalsis motion is numerically investigated using CFD simulation for three different pore sizes and two pattern layouts. The results reveal that, in the stationary microchannel, the average shear stress on the porous membrane is approximately 15% greater than that of the flat membrane, regardless of the pore size. However, when subjected to cyclic deformation, the porous membrane with smaller pore size experiences stronger variation of shear stress which is ±5.61%, ±10.12% and ±34.45% from its average for the pore diameters of 10 µm, 5 µm and 1 µm, respectively. The shear stress distribution is more consistent in case of the staggered pattern layout while the in-line pattern layout allows for a 32% wider range of shear stress at the identical pore size during a cyclic deformation. These changes in the shear stress caused by peristalsis motion, porous size and membrane pattern could be the key factors that promote cell differentiation in the deforming gut-on-a-chip model.

4.
Polymers (Basel) ; 13(14)2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34301003

RESUMO

A key way to prevent undesirable fouling of any structure in the marine environment, without harming any microorganisms, is to use a polymer film with high hydrophobicity. The polymer film, which was simply prepared from a blend of hydrophobic polydimethylsiloxane elastomer and hydrophilic polyurethane, showed improved properties and economic viability for antifouling film for the marine industry. The field emission scanning electron microscope and energy dispersive X-ray spectrometer (FESEM and EDX) results from the polymer blend suggested a homogenous morphology and good distribution of the polyurethane disperse phase. The PDMS:PU blend (95:5) film gave a water contact angle of 103.4° ± 3.8° and the PDMS film gave a water contact angle of 109.5° ± 4.2°. Moreover, the PDMS:PU blend (95:5) film could also be modified with surface patterning by using soft lithography process to further increase the hydrophobicity. It was found that PDMS:PU blend (95:5) film with micro patterning from soft lithography process increased the contact angle to 128.8° ± 1.6°. The results from a field test in the Gulf of Thailand illustrated that the bonding strength between the barnacles and the PDMS:PU blend (95:5) film (0.07 MPa) were lower than the bonding strength between the barnacles and the carbon steel (1.16 MPa). The barnacles on the PDMS:PU blend (95:5) film were more easily removed from the surface. This indicated that the PDMS:PU blend (95:5) exhibited excellent antifouling properties and the results indicated that the PDMS:PU blend (95:5) film with micro patterning surface could be employed for antifouling application.

5.
Nanomaterials (Basel) ; 11(2)2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33572813

RESUMO

Bio-inspired surfaces with superamphiphobic properties are well known as effective candidates for antifouling technology. However, the limitation of large-area mastering, patterning and pattern collapsing upon physical contact are the bottleneck for practical utilization in marine and medical applications. In this study, a roll-to-plate nanoimprint lithography (R2P NIL) process using Morphotonics' automated Portis NIL600 tool was used to replicate high aspect ratio (5.0) micro-structures via reusable intermediate flexible stamps that were fabricated from silicon master molds. Two types of Morphotonics' in-house UV-curable resins were used to replicate a micro-pillar (PIL) and circular rings with eight stripe supporters (C-RESS) micro-structure onto polycarbonate (PC) and polyethylene terephthalate (PET) foil substrates. The pattern quality and surface wettability was compared to a conventional polydimethylsiloxane (PDMS) soft lithography process. It was found that the heights of the R2P NIL replicated PIL and C-RESS patterns deviated less than 6% and 5% from the pattern design, respectively. Moreover, the surface wettability of the imprinted PIL and C-RESS patterns was found to be superhydro- and oleophobic and hydro- and oleophobic, respectively, with good robustness for the C-RESS micro-structure. Therefore, the R2P NIL process is expected to be a promising method to fabricate robust C-RESS micro-structures for large-scale anti-biofouling application.

6.
RSC Adv ; 11(56): 35653-35662, 2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-35493190

RESUMO

The objective of this paper is to propose a surface modification method for preparing PDMS microfluidic devices with partially hydrophilic-hydrophobic surfaces for generating double emulsion droplets. The device is designed to be easy to use without any complicated preparation process and also to achieve high droplet encapsulation efficiency compared to conventional devices. The key component of this preparation process is the permanent chemical coating for which the Pluronic surfactant is added into the bulk PDMS. The addition of Pluronic surfactant can modify the surface property of PDMS from a fully hydrophobic surface to a partially hydrophilic-hydrophobic surface whose property can be either hydrophilic or hydrophobic depending on the air- or water-treatment condition. In order to control the surface wettability, this microfluidic device with the partially hydrophilic-hydrophobic surface undergoes water treatment by injecting deionized water into the specific microchannels where their surface property changes to hydrophilic. This microfluidic device is tested by generating monodisperse water-in-oil-in-water (w/o/w) double emulsion micro-droplets for which the maximum droplet encapsulation efficiency of 92.4% is achieved with the average outer and inner diameters of 75.0 and 57.7 µm, respectively.

7.
Appl Opt ; 53(31): 7487-97, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25402916

RESUMO

An optical transducer using an integrated optics polymer nanowire is proposed. The nanoimprint technique is used to fabricate an OrmoComp nanowire with 1.0 µm width and 0.5 µm height, but the resulting sidewalls are not perfectly vertical. Maximum sensitivity is achieved by enhancing the evanescent field in the cladding region. The possible mode fields and power confinement of the nanowire are studied with respect to their structural dimensions, the operating wavelength, and the cladding material by using the H-field finite element method. The attenuation coefficient is extracted and calculated over the different cladding media, specifically air, water, and glycerol solution. It is observed that the scattering caused due to the surface roughness is the dominant effect that provides a larger attenuation coefficient.

8.
J Nanosci Nanotechnol ; 12(6): 4919-27, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22905552

RESUMO

Needle-shaped pillars so-called "Black silicon" (B-Si) were fabricated by etching cleaned silicon wafer with fluorine-based deep reactive ion etching plasma. The B-Si pillar with the pillar size (a) and spacing (b) of 250 nm, and height (h) of 6.47 microm, coated with SiOxFy film had water contact angle (WCA) and ethylene glycol contact angle (ECA) of 159.8 degrees and 135.5 degrees, respectively. After coating the pillar with trichloro(1H,1H, 2H,2H-perfluorooctyl)silane (TPFS), the WCA and ECA increased to 166.2 degrees and 161.8 degrees, respectively. At the optimum etching condition, the B-Si pillar with the size a = 376 nm, b = 576 nm, h = 6.47microm, and the aspect ratio of 14.80 showed the WCA and ECA of 4.25 degrees and 14.77 degrees, respectively. After coating with the TPFS, liquid droplets ran across the sample's surface rapidly and the WCA and ECA could not be measured. Moreover, when the pillar height was increased twice, the WCA and ECA of the B-Si with and without the TPFS coating were greater than 170 degrees, indicating excellent water-and-oil repellency and can be applied for Micro-Electro-Mechanical Systems (MEMS).


Assuntos
Cristalização/métodos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Gases em Plasma/química , Silício/química , Interações Hidrofóbicas e Hidrofílicas , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
9.
J Nanosci Nanotechnol ; 11(10): 8967-73, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22400288

RESUMO

Superhydrophobic surface can be fabricated by creating a rough surface at very fine scale and modify it with low-surface energy material. To obtain the optimum superhydrophobicity, the surface roughness must be maximized. To avoid the limitation of scaling down the pattern size by using an expensive lithography tools, the surface roughness factor (r) was increased by means of changing an asperity shape so as to increase its overall surface area. In this paper, the patterns of the asperities under studied were wave stripes, line stripes, cylindrical pillars, square pillars, pentagonal pillars, hexagonal pillars, and octagonal pillars. All pillar shapes were arranged in square arrays, hexagonal arrays, and continuous stripes. The asperities sizes and the pitches were varied from 1 to 5 microm with 10 microm of asperity height. Then the patterned surfaces were coated with polydimethylsiloxane mixed with 10 wt% dicumylperoxide. It was found that the stripe asperities can generate only hydrophobic surface with water contact angle (WCA) of 135 degrees to 145 degrees. The pillars with square and hexagonal arrays had the WCA of 149 degrees to 158 degrees. The pentagonal pillars with square and hexagonal arrays achieved the highest WCA with an average WCA of 156 degrees. It was evident that the pillar shape had significant effect on the superhydrophobicity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA