Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
eNeuro ; 10(2)2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36754625

RESUMO

Rhythmic neural activity, which coordinates brain regions and neurons to achieve multiple brain functions, is impaired in many diseases. Despite the therapeutic potential of driving brain rhythms, methods to noninvasively target deep brain regions are limited. Accordingly, we recently introduced a noninvasive stimulation approach using flickering lights and sounds ("flicker"). Flicker drives rhythmic activity in deep and superficial brain regions. Gamma flicker spurs immune function, clears pathogens, and rescues memory performance in mice with amyloid pathology. Here, we present substantial improvements to this approach that is flexible, user-friendly, and generalizable across multiple experimental settings and species. We present novel open-source methods for flicker stimulation across rodents and humans. We demonstrate rapid, cross-species induction of rhythmic activity without behavioral confounds in multiple settings from electrophysiology to neuroimaging. This flicker approach provides an exceptional opportunity to discover the therapeutic effects of brain rhythms across scales and species.


Assuntos
Ondas Encefálicas , Encéfalo , Humanos , Animais , Camundongos , Encéfalo/fisiologia , Ondas Encefálicas/fisiologia , Cognição , Neurônios , Amiloide , Estimulação Luminosa/métodos
2.
Nat Protoc ; 13(8): 1850-1868, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30072722

RESUMO

Microglia, the primary immune cells of the brain, play a key role in pathological and normal brain function. Growing efforts aim to reveal how these cells may be harnessed to treat both neurodegenerative diseases such as Alzheimer's and developmental disorders such as schizophrenia and autism. We recently showed that using noninvasive exposure to 40-Hz white-light (4,000 K) flicker to drive 40-Hz neural activity transforms microglia into an engulfing state and reduces amyloid beta, a peptide thought to initiate neurotoxic events in Alzheimer's disease (AD). This article describes how to construct an LED-based light-flicker apparatus, expose animals to 40-Hz flicker and control conditions, and perform downstream assays to study the effects of these stimuli. Light flicker is simple, faster to implement, and noninvasive, as compared with driving 40-Hz activity using optogenetics; however, it does not target specific cell types, as is achievable with optogenetics. This noninvasive approach to driving 40-Hz neural activity should enable further research into the interactions between neural activity, molecular pathology, and the brain's immune system. Construction of the light-flicker system requires ~1 d and some electronics experience or available guidance. The flicker manipulation and assessment can be completed in a few days, depending on the experimental design.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Endocitose/efeitos da radiação , Luz , Microglia/metabolismo , Microglia/efeitos da radiação , Animais , Biotransformação , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...