Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell Biol ; 29(20): 5540-51, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19667076

RESUMO

In this study, we examine the telomeric functions of the mammalian Mre11 complex by using hypomorphic Mre11 and Nbs1 mutants (Mre11(ATLD1/ATLD1) and Nbs1(Delta)(B/)(DeltaB), respectively). No telomere shortening was observed in Mre11(ATLD1/ATLD1) cells after extensive passage through culture, and the rate of telomere shortening in telomerase-deficient (Tert(Delta)(/)(Delta)) Mre11(ATLD1/ATLD1) cells was the same as that in Tert(Delta)(/)(Delta) alone. Although telomeres from late-passage Mre11(ATLD1/ATLD1) Tert(Delta)(/)(Delta) cells were as short as those from Tert(Delta)(/)(Delta), the incidence of telomere fusions was reduced. This effect on fusions was also evident upon acute telomere dysfunction in Mre11(ATLD1/ATLD1) and Nbs1(Delta)(B/)(DeltaB) cells rendered Trf2 deficient by cre-mediated TRF2 inactivation than in wild-type cells. The residual fusions formed in Mre11 complex mutant cells exhibited a strong tendency toward chromatid fusions, with an almost complete bias for fusion of telomeres replicated by the leading strand. Finally, the response to acute telomere dysfunction was strongly impaired by Mre11 complex hypomorphism, as the formation of telomere dysfunction-induced DNA damage foci was reduced in both cre-infected Mre11(ATLD1/ATLD1) Trf2(F/)(Delta) and Nbs1(Delta)(B/)(DeltaB) Trf2(F/F) cells. These data indicate that the Mre11 complex influences the cellular response to telomere dysfunction, reminiscent of its influence on the response to interstitial DNA breaks, and suggest that it may promote telomeric DNA end processing during DNA replication.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/metabolismo , Telômero/fisiologia , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo , Animais , Cromossomos de Mamíferos/metabolismo , Dano ao DNA/genética , Dano ao DNA/fisiologia , Fibroblastos/citologia , Fibroblastos/metabolismo , Proteína Homóloga a MRE11 , Camundongos
2.
J Cell Biochem ; 97(3): 459-73, 2006 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-16288461

RESUMO

The advent of gene targeting has allowed the dissection of many essential cellular pathways, including those involved in cell cycle regulation, signal transduction, and development. However, it is becoming increasingly clear that the simple gene deletion strategy may not be sufficient for the modeling of many cancer syndromes. In this Prospect article, we will discuss the strengths and weaknesses of mouse models, how they have advanced from gene deletions to truncations, point mutations, and conditional mouse models in which expression or loss of the gene of interest is controlled either temporally or spatially. We will also consider future directions for the use of mouse models in cancer. The vastness of the field necessitates focusing on a few specific examples with the unfortunate exclusion of many excellent studies from our discussion. As such, we focus on a few specific models of human cancer syndromes, however many of the themes discussed here are applicable to other systems of genetic manipulation and may be applied across fields.


Assuntos
Proteínas de Ciclo Celular/genética , Dano ao DNA , Modelos Animais de Doenças , Neoplasias/genética , Animais , Marcação de Genes , Humanos , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Proteínas Nucleares/genética , Transdução de Sinais/genética
3.
Cancer Genet Cytogenet ; 135(2): 165-72, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12127401

RESUMO

The majority of families with classic Li-Fraumeni Syndrome (LFS) and a significant proportion of Li-Fraumeni-like (LFL) families have a germline mutation in the TP53 tumor suppressor gene. However around 20% of LFS and 60% of LFL families have no identifiable genetic defect in the coding region or splice junctions of TP53, and the genetic basis for cancer susceptibility in these families remains largely uncharacterized. To determine whether promoter mutations could be responsible for the Li-Fraumeni phenotype, we sequenced the TP53 promoter in index cases from members of classic LFS and LFL families without detectable TP53 mutations. We identified an identical single nucleotide deletion within the C/EBP- like site of the promoter in two out of eighteen such families (11%), compared to only one of a total of 366 control samples (0.3%). Although this result is highly significant (P=0.006, Fischer's exact test), the mutation did not affect the expression of TP53 in our hands. We provide evidence that this site is not utilized in the wild type TP53 promoter and further, that mutation of this site in LFS/LFL does not have a functional effect. We conclude that the sequence variant is a rare polymorphism arising within the TP53 promoter. However, the significantly increased frequency of this variant in LFS/LFL remains intriguing.


Assuntos
Genes p53 , Síndrome de Li-Fraumeni/genética , Polimorfismo Genético , Regiões Promotoras Genéticas/genética , Pareamento Incorreto de Bases , Análise Mutacional de DNA , Ensaio de Desvio de Mobilidade Eletroforética , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Linhagem , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...