Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Foods ; 12(6)2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36981241

RESUMO

This study analyzes the possibility of using soybeans as an addition to the main ingredients used to make bread, with the aim of improving its quality characteristics. To maximize the nutritional profile of soybeans they were subjected to the germination and lyophilization process before being used in bread making. The addition levels of 5%, 10%, 15%, and 20% germinated soybean flour (GSF) on dough rheology and bread quality were used. From the rheology point of view, the GSF addition had the effect of decreasing the values of the creep and recovery parameters: JCo, JCm, µCo, Jmax, JRo, JRm, and Jr. At the same time, the rheological parameters λC and λR increased. The GSF addition did not affect dough homogeneity as may be seen from EFLM analysis. Regarding the quality of the bread, it may be concluded that a maximum of 15% GSF addition in wheat flour had a desirable effect on loaf volume, porosity, elasticity, and sensory properties of the bread. The bread samples with GSF additions showed a higher brightness and a less pronounced red and yellow tint. When the percentage of GSF in wheat flour increased, the value of the firmness parameter increased and the value of the gumminess, cohesiveness, and resilience parameters decreased. The addition of GSF had a desirable influence on the crumb structure of the bread samples. Thus, taking into account the results of the determinations outlined above, it can be stated that GSF addition in wheat flour leads to bread samples with good quality characteristics.

2.
Foods ; 11(19)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36230058

RESUMO

The present study analyzed the effects of germinated lentil flour (LGF) addition at different levels in wheat flour (2.5%, 5%, 7.5%, and 10%), on dough rheological behavior, dough microstructure, and bread quality. Creep-recovery tests showed that the dough samples with high levels of LGF addition presented a higher resistance to flow deformability of the dough. Dough microstructure as analyzed using EFLM showed an increase in the protein area (red color) and a decrease in the starch (green color) amount with the increased level of LGF addition in the wheat flour. It was found that the LGF addition led to the improvement of the porosity, specific volume, and elasticity of the bread samples. The breads with LGF addition were darker and had a slightly reddish and yellowish tint. The bread textural parameters highlighted significant (p < 0.05) higher values for firmness and gumminess and significant (p < 0.05) lower ones for cohesiveness and resilience for the bread with LGF addition when compared with the control. The bread samples with a 2.5% and 5% addition had a more dense structure of the crumb pores. Regarding sensory evaluation, the bread samples with LGF addition in the wheat flour were well appreciated by the consumers. The addition also was desirable due to the fact that it supplemented bread with a greater amount of protein and minerals due to the composition of lentil grains. Therefore, LGF could be successfully used as an ingredient for bread making in order to obtain bread with an improved quality.

3.
Plants (Basel) ; 11(9)2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35567225

RESUMO

The research focused on the effect of germinated chickpea flour (GCF) in a lyophilized form on dough rheology, microstructure and bread quality. The GCF addition levels in refined wheat flour with a low α-amylase activity were 5%, 10%, 15% and 20%, up to an optimum falling number value of the mixed flour. Generally, the dough rheological properties of water absorption, tolerance to mixing, dough consistency, dough extensibility, index of swelling, baking strength and loss tangent (tan δ) for the temperature sweep test decreased with the increased level of GCF addition, whereas the total volume of gas production and G' and G″ modules for the temperature sweep test increased. Dough microstructure analyzed by epifluorescence light microscopy (EFLM) clearly showed a change in the starch and gluten distribution from the dough system by an increase in protein and a decrease in starch granules phase with the increased level of GCF addition in wheat flour. The bread physical characteristics (loaf volume, porosity, elasticity) and sensory ones were improved with up to 15% GCF addition in wheat flour. The bread firmness increased, whereas the bread gumminess, cohesiveness and resilience decreased with increased GCF addition in wheat flour. The bread crust and crumb color of the bread samples become darker with an increased GCF addition in the bread recipe.

4.
Foods ; 10(7)2021 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-34359411

RESUMO

Germinated bean flour (GBF) was obtained and incorporated in different levels (5%, 10%, 15%, 20% and 25%) into dough and bread made from refined wheat flour. The incorporation of GBF into wheat flour led to a decrease of the water absorption value, dough consistency, baking strength, extensibility and improved tolerance for mixing, total gas production and α-amylase activity. Tan δ increased in a frequency-dependent manner for the samples with a GBF addition, whereas the G' and G" decreased with the increased value of the temperature. According to the microscopic structures of the dough samples, a decrease of the starch area may be clearly seen for the samples with high levels of GBF addition in wheat flour. The bread evaluation showed that the specific volume, porosity and elasticity increased, whereas the firmness, gumminess and chewiness decreased up to a level of 15% GBF addition in wheat flour. The color parameters L*, a* and b* of the bread samples indicated a darkening effect of GBF on the crumb and crust. From the sensory point of view, the bread up to a 15% GBF addition was well-appreciated by the panelists. According to the data obtained, GBF could be recommended for use as an improver, especially up to a level of 15% addition in the bread-making industry.

5.
Plants (Basel) ; 10(3)2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33809819

RESUMO

The microstructural and physicochemical compositions of bean (Phaseolus vulgaris), lentil (Lens culinaris Merr.), soybean (Glycine max L.), chickpea (Cicer aretinium L.) and lupine (Lupinus albus) were investigated over 2 and 4 days of germination. Different changes were noticed during microscopic observations (Stereo Microscope, SEM) of the legume seeds subjected to germination, mostly related to the breakages of the seed structure. The germination caused the increase in protein content for bean, lentil, and chickpea and of ash content for lentil, soybean and chickpea. Germination increased the availability of sodium, magnesium, iron, zinc and also the acidity for all legume types. The content of fat decreased for lentil, chickpea, and lupine, whereas the content of carbohydrates and pH decreased for all legume types during the four-day germination period. Fourier transform infrared spectroscopic (FT-IR) spectra show that the compositions of germinated seeds were different from the control and varied depending on the type of legume. The multivariate analysis of the data shows close associations between chickpea, lentil, and bean and between lupine and soybean samples during the germination process. Significant negative correlations were obtained between carbohydrate contents and protein, fat and ash at the 0.01 level.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA