Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 13(17)2021 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-34503153

RESUMO

Despite the latest advances in hepatocellular carcinoma (HCC) screening and treatment modalities, HCC is still representing a global burden. Most HCC patients present at later stages to an extent that conventional curative options are ineffective. Hence, systemic therapy represented by the tyrosine kinase inhibitor, sorafenib, in the first-line setting is the main treatment modality for advanced-stage HCC. However, in the two groundbreaking phase III clinical trials, the SHARP and Asia-Pacific trials, sorafenib has demonstrated a modest prolongation of overall survival in almost 30% of HCC patients. As HCC develops in an immune-rich milieu, particular attention has been placed on immune checkpoint inhibitors (ICIs) as a novel therapeutic modality for HCC. Yet, HCC therapy is hampered by the resistance to chemotherapeutic drugs and the subsequent tumor recurrence. HCC is characterized by substantial genomic heterogeneity that has an impact on cellular response to the applied therapy. And hence, this review aims at giving an insight into the therapeutic impact and the different mechanisms of resistance to sorafenib and ICIs as well as, discussing the genomic heterogeneity associated with such mechanisms.

2.
World J Hepatol ; 12(12): 1211-1227, 2020 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-33442449

RESUMO

BACKGROUND: Anti-programmed death therapy has thrust immunotherapy into the spotlight. However, such therapy has a modest response in hepatocellular carcinoma (HCC). Epigenetic immunomodulation is a suggestive combinatorial therapy with immune checkpoint blockade. Non-coding ribonucleic acid (ncRNA) driven regulation is a major mechanism of epigenetic modulation. Given the wide range of ncRNAs that co-opt in programmed cell-death protein 1 (PD-1)/programmed death ligand 1 (PD-L1) regulation, and based on the literature, we hypothesized that miR-155-5p, miR-194-5p and long non-coding RNAs (lncRNAs) X-inactive specific transcript (XIST) and MALAT-1 are involved in a regulatory upstream pathway for PD-1/PD-L1. Recently, nutraceutical therapeutics in cancers have received increasing attention. Thus, it is interesting to study the impact of oleuropein on the respective study key players. AIM: To explore potential upstream regulatory ncRNAs for the immune checkpoint PD-1/PD-L1. METHODS: Bioinformatics tools including microrna.org and lnCeDB software were adopted to detect targeting of miR-155-5p, miR-194-5p and lncRNAs XIST and MALAT-1 to PD-L1 mRNA, respectively. In addition, Diana tool was used to predict targeting of both aforementioned miRNAs to lncRNAs XIST and MALAT-1. HCC and normal tissue samples were collected for scanning of PD-L1, XIST and MALAT-1 expression. To study the interaction among miR-155-5p, miR-194-5p, lncRNAs XIST and MALAT-1, as well as PD-L1 mRNA, a series of transfections of the Huh-7 cell line was carried out. RESULTS: Bioinformatics software predicted that miR-155-5p and miR-194-5p can target PD-L1, MALAT-1 and XIST. MALAT-1 and XIST were predicted to target PD-L1 mRNA. PD-L1 and XIST were significantly upregulated in 23 HCC biopsies compared to healthy controls; however, MALAT-1 was barely detected. MiR-194 induced expression elevated the expression of PD-L1, XIST and MALAT-1. However, overexpression of miR-155-5p induced the upregulation of PD-L1 and XIST, while it had a negative impact on MALAT-1 expression. Knockdown of XIST did have an impact on PD-L1 expression; however, following knockdown of the negative regulator of X-inactive specific transcript (TSIX), PD-L1 expression was elevated, and abolished MALAT-1 activity. Upon co-transfection of miR-194-5p with siMALAT-1, PD-L1 expression was elevated. Co-transfection of miR-194-5p with siXIST did not have an impact on PD-L1 expression. Upon co-transfection of miR-194 with siTSIX, PD-L1 expression was upregulated. Interestingly, the same PD-L1 expression pattern was observed following miR-155-5p co-transfections. Oleuropein treatment of Huh-7 cells reduced the expression profile of PD-L1, XIST, and miR-155-5p, upregulated the expression of miR-194-5p and had no significant impact on the MALAT-1 expression profile. CONCLUSION: This study reported a novel finding revealing that opposing acting miRNAs in HCC, have the same impact on PD-1/PD-L1 immune checkpoint by sharing a common signaling pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...