Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 265
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(36): 25282-25289, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39215715

RESUMO

Inspired by recent advances in electrochemical CO2 reduction (CO2R) under acidic conditions, herein we leverage in situ spectroscopy to inform the optimization of CO2R at low pH. Using attenuated total reflection surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS) and fluorescent confocal laser scanning microscopy, we investigate the role that alkali cations (M+) play on electrochemical CO2R. This study hence provides important information related to the local electrode surface pH under bulk acidic conditions for CO2R, both in the presence and absence of an organic film layer, at variable [M+]. We show that in an acidic electrolyte, an appropriate current density can enable CO2R in the absence of metal cations. In situ local pH measurements suggest the local [H+] must be sufficiently depleted to promote H2O reduction as the competing reaction with CO2R. Incrementally incorporating [K+] leads to increases in the local pH that promotes CO2R but only at proton consumption rates sufficient to drive the pH up dramatically. Stark tuning measurements and analysis of surface water structure reveal no change in the electric field with [M+] and a desorption of interfacial water, indicating that improved CO2R performance is driven by suppression of H+ mass transport and modification of the interfacial solvation structure. In situ pH measurements confirm increasing local pH, and therefore decreased local [CO2], with [M+], motivating alternate means of modulating proton transport. We show that an organic film formed via in situ electrodeposition of an organic additive provides a means to achieve selective CO2R (FECO2R ∼ 65%) over hydrogen evolution reaction in the presence of strong acid (pH 1) and low cation concentrations (≤0.1 M) at both low and high current densities.

2.
Nat Nanotechnol ; 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39048705

RESUMO

Active metasurfaces enable dynamic manipulation of the scattered electromagnetic wavefront by spatially varying the phase and amplitude across arrays of subwavelength scatterers, imparting momentum to outgoing light. Similarly, periodic temporal modulation of active metasurfaces allows for manipulation of the output frequency of light. Here we combine spatial and temporal modulation in electrically modulated reflective metasurfaces operating at 1,530 nm to generate and diffract a spectrum of sidebands at megahertz frequencies. Temporal modulation with tailored waveforms enables the design of a spectrum of sidebands. By impressing a spatial phase gradient on the metasurface, we can diffract selected combinations of sideband frequencies. Combining active temporal and spatial variation can enable unique optical functions, such as frequency mixing, harmonic beam steering or shaping, and breaking of Lorentz reciprocity.

3.
Light Sci Appl ; 13(1): 176, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39048563

RESUMO

A body that violates Kirchhoff's law of thermal radiation exhibits an inequality in its spectral directional absorptivity and emissivity. Achieving such an inequality is of fundamental interest as well as a prerequisite for achieving thermodynamic limits in photonic energy conversion1 and radiative cooling2. Thus far, inequalities in the spectral directional emissivity and absorptivity have been limited to narrow spectral resonances3, or wavelengths well beyond the infrared regime4. Bridging the gap from basic demonstrations to practical applications requires control over a broad spectral range of the unequal spectral directional absorptivity and emissivity. In this work, we demonstrate broadband nonreciprocal thermal emissivity and absorptivity by measuring the thermal emissivity and absorptivity of gradient epsilon-near-zero InAs layers of subwavelength thicknesses (50 nm and 150 nm) with an external magnetic field. The effect occurs in a spectral range (12.5-16 µm) that overlaps with the infrared transparency window and is observed at moderate (1 T) magnetic fields.

4.
ACS Nano ; 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39037113

RESUMO

Photocatalytic CO2 reduction to CO under unassisted (unbiased) conditions was recently demonstrated using heterostructure catalysts that combine p-type GaN with plasmonic Au nanoparticles and Cu nanoparticles as cocatalysts (p-GaN/Al2O3/Au/Cu). Here, we investigate the mechanistic role of Cu in p-GaN/Al2O3/Au/Cu under unassisted photocatalytic operating conditions using Cu K-edge X-ray absorption spectroscopy and first-principles calculations. Upon exposure to gas-phase CO2 and H2O vapor reaction conditions, the composition of the Cu nanoparticles is identified as a mixture of CuI and CuII oxide, hydroxide, and carbonate compounds without metallic Cu. These composition changes, indicating oxidative conditions, are rationalized by bulk Pourbaix thermodynamics. Under photocatalytic operating conditions with visible light excitation of the plasmonic Au nanoparticles, further oxidation of CuI to CuII is observed, indicating light-driven hole transfer from Au-to-Cu. This observation is supported by the calculated band alignments of the oxidized Cu compositions with plasmonic Au particles, where light-driven hole transfer from Au-to-Cu is found to be thermodynamically favored. These findings demonstrate that under unassisted (unbiased) gas-phase reaction conditions, Cu is found in carbonate-rich oxidized compositions rather than metallic Cu. These species then act as the active cocatalyst and play an oxidative rather than a reductive role in catalysis when coupled with plasmonic Au particles for light absorption, possibly opening an additional channel for water oxidation in this system.

5.
Nat Commun ; 15(1): 4203, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760349

RESUMO

Meter-scale, submicron-thick lightsail spacecraft, propelled to relativistic velocities via photon pressure using high-power density laser radiation, offer a potentially new route to space exploration within and beyond the solar system, posing substantial challenges for materials science and engineering. We analyze the structural and photonic design of flexible lightsails by developing a mesh-based multiphysics simulator based on linear elastic theory. We observe spin-stabilized flexible lightsail shapes and designs that are immune to shape collapse during acceleration and exhibit beam-riding stability despite deformations caused by photon pressure and thermal expansion. Excitingly, nanophotonic lightsails based on planar silicon nitride membranes patterned with suitable optical metagratings exhibit both mechanically and dynamically stable propulsion along the pump laser axis. These advances suggest that laser-driven acceleration of membrane-like lightsails to the relativistic speeds needed to access interstellar distances is conceptually feasible, and that their fabrication could be achieved by scaling up modern microfabrication technology.

6.
ACS Energy Lett ; 9(4): 1440-1445, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38633999

RESUMO

Management of the electrode surface temperature is an understudied aspect of (photo)electrode reactor design for complex reactions, such as CO2 reduction. In this work, we study the impact of local electrode heating on electrochemical reduction of CO2 reduction. Using the ferri/ferrocyanide open circuit voltage as a reporter of the effective reaction temperature, we reveal how the interplay of surface heating and convective cooling presents an opportunity for cooptimizing mass transport and thermal assistance of electrochemical reactions, where we focus on reduction of CO2 to carbon-coupled (C2+) products. The introduction of an organic coating on the electrode surface facilitates well-behaved electrode kinetics with near-ambient bulk electrolyte temperature. This approach helps to probe the fundamentals of thermal effects in electrochemical reactions, as demonstrated through Bayesian inference of Tafel kinetic parameters from a suite of high throughput experiments, which reveal a decrease in overpotential for C2+ products by 0.1 V on polycrystalline copper via 60 °C surface heating.

7.
ACS Photonics ; 11(3): 816-865, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38550347

RESUMO

Metasurfaces have recently risen to prominence in optical research, providing unique functionalities that can be used for imaging, beam forming, holography, polarimetry, and many more, while keeping device dimensions small. Despite the fact that a vast range of basic metasurface designs has already been thoroughly studied in the literature, the number of metasurface-related papers is still growing at a rapid pace, as metasurface research is now spreading to adjacent fields, including computational imaging, augmented and virtual reality, automotive, display, biosensing, nonlinear, quantum and topological optics, optical computing, and more. At the same time, the ability of metasurfaces to perform optical functions in much more compact optical systems has triggered strong and constantly growing interest from various industries that greatly benefit from the availability of miniaturized, highly functional, and efficient optical components that can be integrated in optoelectronic systems at low cost. This creates a truly unique opportunity for the field of metasurfaces to make both a scientific and an industrial impact. The goal of this Roadmap is to mark this "golden age" of metasurface research and define future directions to encourage scientists and engineers to drive research and development in the field of metasurfaces toward both scientific excellence and broad industrial adoption.

8.
Nano Lett ; 24(7): 2257-2263, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38346272

RESUMO

High quality factor optical nanostructures provide a great opportunity to enhance nonlinear optical processes such as third harmonic generation. However, the field enhancement in these high quality factor structures is typically accompanied by optical mode nonlocality. As a result, the enhancement of nonlinear processes comes at the cost of their local control as needed for nonlinear wavefront shaping, imaging, and holography. Here we show simultaneous strong enhancement and spatial control over third harmonic generation with a local high-Q metasurface relying on higher-order Mie resonant modes. Our results demonstrate third harmonic generation at an efficiency of up to 3.25 × 10-5, high quality wavefront shaping as illustrated by a third harmonic metalens, and a flatband, angle independent, third harmonic response up to ±11° incident angle. The demonstrated high level of local control and efficient frequency conversion offer promising prospects for realizing novel nonlinear optical devices.

9.
Nano Lett ; 24(4): 1090-1095, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38230969

RESUMO

Photoelectrochemical CO2 reduction (CO2R) is an appealing solution for converting carbon dioxide into higher-value products. However, CO2R in aqueous electrolytes suffers from poor selectivity due to the competitive hydrogen evolution reaction that is dominant on semiconductor surfaces in aqueous electrolytes. We demonstrate that functionalizing gold/p-type gallium nitride devices with a film derived from diphenyliodonium triflate suppresses hydrogen generation from 90% to 18%. As a result, we observe increases in the Faradaic efficiency and partial current density for carbon monoxide of 50% and 3-fold, respectively. Furthermore, we demonstrate through optical absorption measurements that the molecular film employed herein, regardless of thickness, does not affect the photocathode's light absorption. Altogether, this study provides a rigorous platform for elucidating the catalytic structure-property relationships to enable engineering of active, stable, and selective materials for photoelectrochemical CO2R.

10.
Adv Sci (Weinh) ; 11(2): e2304890, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37974381

RESUMO

Monolayer ternary tellurides based on alloying different transition metal dichalcogenides (TMDs) can result in new two-dimensional (2D) materials ranging from semiconductors to metals and superconductors with tunable optical and electrical properties. Semiconducting WTe2 x S2(1- x ) monolayer possesses two inequivalent valleys in the Brillouin zone, each valley coupling selectively with circularly polarized light (CPL). The degree of valley polarization (DVP) under the excitation of CPL represents the purity of valley polarized photoluminescence (PL), a critical parameter for opto-valleytronic applications. Here, new strategies to efficiently tailor the valley-polarized PL from semiconducting monolayer WTe2 x S2(1- x ) at room temperature (RT) through alloying and back-gating are presented. The DVP at RT is found to increase drastically from < 5% in WS2 to 40% in WTe0.12 S1.88 by Te-alloying to enhance the spin-orbit coupling. Further enhancement and control of the DVP from 40% up to 75% is demonstrated by electrostatically doping the monolayer WTe0.12 S1.88 via metallic 1T'-WTe2 electrodes, where the use of 1T'-WTe2 substantially lowers the Schottky barrier height (SBH) and weakens the Fermi-level pinning of the electrical contacts. The demonstration of drastically enhanced DVP and electrical tunability in the valley-polarized emission from 1T'-WTe2 /WTe0.12 S1.88 heterostructures paves new pathways towards harnessing valley excitons in ultrathin valleytronic devices for RT applications.

11.
Nat Commun ; 14(1): 8476, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38123546

RESUMO

The strong interaction of light with micro- and nanostructures plays a critical role in optical sensing, nonlinear optics, active optical devices, and quantum optics. However, for wavefront shaping, the required local control over light at a subwavelength scale limits this interaction, typically leading to low-quality-factor optical devices. Here, we demonstrate an avenue towards high-quality-factor wavefront shaping in two spatial dimensions based on all-dielectric higher-order Mie-resonant metasurfaces. We design and experimentally realize transmissive band stop filters, beam deflectors and high numerical aperture radial lenses with measured quality factors in the range of 202-1475 at near-infrared wavelengths. The excited optical mode and resulting wavefront control are both local, allowing versatile operation with finite apertures and oblique illumination. Our results represent an improvement in quality factor by nearly two orders of magnitude over previous localized mode designs, and provide a design approach for a new class of compact optical devices.

12.
ACS Nano ; 17(23): 23692-23701, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37861986

RESUMO

Quantum confinement of two-dimensional excitons in van der Waals materials via electrostatic trapping, lithographic patterning, Moiré potentials, and chemical implantation has enabled significant advances in tailoring light emission from nanostructures. While such approaches rely on complex preparation of materials, natural edges are a ubiquitous feature in layered materials and provide a different approach for investigating quantum-confined excitons. Here, we observe that certain edge sites of monolayer black phosphorus (BP) strongly localize the intrinsic quasi-one-dimensional excitons, yielding sharp spectral lines in photoluminescence, with nearly an order of magnitude line width reduction. Through structural characterization of BP edges using transmission electron microscopy and first-principles GW plus Bethe-Salpeter equation (GW-BSE) calculations of exemplary BP nanoribbons, we find that certain atomic reconstructions can strongly quantum-confine excitons resulting in distinct emission features, mediated by local strain and screening. We observe linearly polarized luminescence emission from edge reconstructions that preserve the mirror symmetry of the parent BP lattice, in agreement with calculations. Furthermore, we demonstrate efficient electrical switching of localized edge excitonic luminescence, whose sites act as excitonic transistors for emission. Localized emission from BP edges motivates exploration of nanoribbons and quantum dots as hosts for tunable narrowband light generation, with future potential to create atomic-like structures for quantum information processing applications as well as exploration of exotic phases that may reside in atomic edge structures.

13.
ACS Nano ; 17(19): 19011-19021, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37721430

RESUMO

Since dissipative processes are ubiquitous in semiconductors, characterizing how electronic and thermal energy transduce and transport at the nanoscale is vital for understanding and leveraging their fundamental properties. For example, in low-dimensional transition metal dichalcogenides (TMDCs), excess heat generation upon photoexcitation is difficult to avoid since even with modest injected exciton densities exciton-exciton annihilation still occurs. Both heat and photoexcited electronic species imprint transient changes in the optical response of a semiconductor, yet the distinct signatures of each are difficult to disentangle in typical spectra due to overlapping resonances. In response, we employ stroboscopic optical scattering microscopy (stroboSCAT) to simultaneously map both heat and exciton populations in few-layer MoS2 on relevant nanometer and picosecond length- and time scales and with 100-mK temperature sensitivity. We discern excitonic contributions to the signal from heat by combining observations close to and far from exciton resonances, characterizing the photoinduced dynamics for each. Our approach is general and can be applied to any electronic material, including thermoelectrics, where heat and electronic observables spatially interplay, and it will enable direct and quantitative discernment of different types of coexisting energy without recourse to complex models or underlying assumptions.

14.
Opt Express ; 31(7): 11227-11238, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37155763

RESUMO

We report the design of a tunable, narrowband, thermal metasurface that employs a hybrid resonance generated by coupling a tunable permittivity graphene ribbon to a silicon photonic crystal. The gated graphene ribbon array, proximitized to a high quality factor Si photonic crystal supporting a guided mode resonance, exhibits tunable narrowband absorbance lineshapes (Q > 10,000). Actively tuned Fermi level modulation in graphene with applied gate voltage between high absorptivity and low absorptivity states gives rise to absorbance on/off ratios exceeding 60. We employ coupled-mode theory as a computationally efficient approach to elements of the metasurface design, demonstrating an orders of magnitude speedup over typical finite element computational methods.

15.
Nano Lett ; 23(10): 4274-4281, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37159934

RESUMO

The intrinsic weak and highly nonlocal dielectric screening of two-dimensional materials is well-known to lead to high sensitivity of their optoelectronic properties to environment. Less studied theoretically is the role of free carriers in those properties. Here, we use ab initio GW and Bethe-Salpeter equation calculations, with a rigorous treatment of dynamical screening and local-field effects, to study the doping dependence of the quasiparticle and optical properties of a monolayer transition-metal dichalcogenide, 2H MoTe2. We predict a quasiparticle band gap renormalization of several hundreds of meV for experimentally attainable carrier densities and a similarly sizable decrease in the exciton binding energy. This results in an almost constant excitation energy for the lowest-energy exciton resonance with an increasing doping density. Using a newly developed and generally applicable plasmon-pole model and a self-consistent solution of the Bethe-Salpeter equation, we reveal the importance of accurately capturing both dynamical and local-field effects to understand detailed photoluminescence measurements.

17.
ACS Nano ; 17(8): 7685-7694, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37043483

RESUMO

Monolayer transition metal dichalcogenide (TMDC) semiconductors exhibit strong excitonic optical resonances, which serve as a microscopic, noninvasive probe into their fundamental properties. Like the hydrogen atom, such excitons can exhibit an entire Rydberg series of resonances. Excitons have been extensively studied in most TMDCs (MoS2, MoSe2, WS2, and WSe2), but detailed exploration of excitonic phenomena has been lacking in the important TMDC material molybdenum ditelluride (MoTe2). Here, we report an experimental investigation of excitonic luminescence properties of monolayer MoTe2 to understand the excitonic Rydberg series, up to 3s. We report a significant modification of emission energies with temperature (4 to 300 K), thereby quantifying the exciton-phonon coupling. Furthermore, we observe a strongly gate-tunable exciton-trion interplay for all the Rydberg states governed mainly by free-carrier screening, Pauli blocking, and band gap renormalization in agreement with the results of first-principles GW plus Bethe-Salpeter equation approach calculations. Our results help bring monolayer MoTe2 closer to its potential applications in near-infrared optoelectronics and photonic devices.

18.
Nano Lett ; 23(7): 2771-2777, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36921321

RESUMO

Two-dimensional transition metal dichalcogenides (2D TMDCs) are promising candidates for ultrathin active nanophotonic elements due to the strong tunable excitonic resonances that dominate their optical response. Here, we demonstrate dynamic beam steering by an active van der Waals metasurface that leverages large complex refractive index tunability near excitonic resonances in monolayer molybdenum diselenide (MoSe2). Through varying the radiative and nonradiative rates of the excitons, we can dynamically control both the reflection amplitude and phase profiles, resulting in an excitonic phased array metasurface. Our experiments show reflected light steering to angles between -30° and 30° at different resonant wavelengths corresponding to the A exciton and B exciton. This active van der Waals metasurface relies solely on the excitonic resonances of the monolayer MoSe2 material rather than geometric resonances of patterned nanostructures, suggesting the potential to harness the tunability of excitonic resonances for wavefront shaping in emerging photonic applications.

19.
Nano Lett ; 23(5): 1930-1937, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36815711

RESUMO

Optically Mie-resonant crystalline silicon nanoparticles have long attracted interest for their unique scattering behaviors. Here, we report a bottom-up nonthermal plasma process that produces highly monodisperse particles, with diameters controllable between 60 and 214 nm, by temporarily electrostatically trapping nanoparticles inside a continuous-flow plasma reactor. The particle size is tuned by adjusting the gas residence time in the reactor. By dispersing the nanoparticles in water, optical extinction measurements indicate colloidal solutions of a particle-based metafluid in which particles support both strong magnetic and electric dipole resonances at visible wavelengths. The spectral overlap of the electric and magnetic resonances gives rise to directional Kerker scattering. The extinction measurements show excellent agreement with Mie theory, supporting the idea that the fabrication process enables particles with narrow distributions in size, shape, and composition. This single-step gas-phase process can also produce Mie-resonant nanoparticles of dielectric materials other than silicon and directly deposit them on the desired substrates.

20.
Opt Express ; 30(15): 26787-26793, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-36236864

RESUMO

We report spectrally selective visible wavelength reflectors using hydrogenated amorphous silicon carbide (a-SiC:H) as a high index contrast material. Beyond 610nm and through the near infrared spectrum, a-SiC:H exhibits very low loss and exhibits an wavelength averaged index of refraction of n = 3.1. Here we design, fabricate, and characterize such visible reflectors using a hexagonal array of a-SiC:H nanopillars as wavelength-selective mirrors with a stop-band of approximately 40 nm full-width at half maximum. The fabricated high contrast grating exhibits reflectivity R >94% at a resonance wavelength of 642nm with a single layer of a-SiC:H nanopillars. The resonance wavelength is tunable by adjusting the geometrical parameters of the a-SiC:H nanopillar array, and we observe a stop-band spectral center shift from 635 nm up to 642 nm. High contrast gratings formed from a-SiC:H nanopillars are a promising platform for various visible wavelength nanophotonics applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA