Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Death Discov ; 9(1): 242, 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37443108

RESUMO

TNFRSF10A (tumor necrosis factor receptor superfamily member 10A) encodes a cell surface receptor protein involved in apoptotic, necroptotic, and inflammatory pathways. Dysregulation of TNFRSF10A has been implicated in sensitization to apoptosis and to the development of multiple diseases, yet little is known of the AC100861.1 long noncoding RNA (lncRNA) that lies head-to-head with TNFRSF10A. Given its genomic positioning, we sought to investigate the function of AC100861.1, focusing on its potential relationship with TNFRSF10A and the role it may play in death receptor signaling. Using knockdown and overexpression strategies, we probed cell viability and examined transcript and protein-level changes in key genes involved in apoptosis, necroptosis, and inflammation. Decreased cell viability was observed upon TNFRSF10A overexpression, regardless of whether the cells were subjected to the chemical stressor tunicamycin. Similarly, overexpression of AC100861.1 led to increased cell death, with a further increase observed under conditions of cellular stress. Knockdown of TNFRSF10A increased cell death only when the cells were stressed, and AC100861.1 knockdown exhibited no effect on cell death. Neither knockdown nor overexpression of either of these genes greatly affected the expression of the other. Manipulating AC100861.1, however, led to marked changes in the expression of genes involved in necroptosis and inflammatory cell-signaling pathways. Additionally, RNA fluorescence in situ hybridization (RNA-FISH) revealed that the AC100861.1 transcript is localized primarily to the cytoplasm. Together, these data suggest that AC100861.1 may have a role in regulating necroptotic and inflammatory signaling pathways and that this function is separate from changes in TNFRSF10A expression. Given the importance of this genomic locus for cell survival, these data provide insight into the function of a poorly understood lncRNA with potential implications regarding disease pathology and treatment.

2.
Mol Vis ; 28: 340-351, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36338668

RESUMO

Purpose: Nuclear retention is a mechanism whereby excess RNA transcripts are stored in the event that a cell needs to quickly respond to a stimulus; maintaining proper nuclear-to-cytoplasmic balance is important for cellular homeostasis and cell function. There are many mechanisms that are employed to determine whether to retain a transcript or export it to the cytoplasm, although the extent to which tissue or cell type, internal and external stressors, and disease pathogenesis affect this process is not yet clear. As the most biochemically active tissue in the body, the retina must mitigate endogenous and exogenous stressors to maintain cell health and tissue function. Oxidative stress, believed to contribute to the pathogenesis or progression of age-related macular degeneration (AMD) and inherited retinal dystrophies (IRDs), is produced both internally from biochemical processes as well as externally from environmental insult. Here, we evaluate the effect of oxidative stress on transcript localization in the retinal pigment epithelium (RPE), with specific focus on transcripts related to RPE function and disease. Methods: We performed poly(A) RNA sequencing on nuclear and cytoplasmic fractions from human induced pluripotent stem cell-derived retinal pigment epithelium (iPSC-RPE) cells exposed to hydrogen peroxide (H2O2), as well as on untreated controls. Results: Under normal conditions, the number of mRNA transcripts retained in the nucleus exceeded that found in studies on other tissues. Further, the nuclear-to-cytoplasmic ratio of transcripts was altered following oxidative stress, as was the retention of genes associated with AMD and IRDs, as well as those that are important for RPE physiology. Conclusions: These results provide a localization catalog of all expressed mRNA in iPSC-RPE under normal conditions and after exposure to H2O2, shedding light on the extent to which H2O2 alters transcript localization and potentially offering insight into one mechanism through which oxidative stress may contribute to the progression of visual disorders.


Assuntos
Células-Tronco Pluripotentes Induzidas , Degeneração Macular , Humanos , Epitélio Pigmentado da Retina/metabolismo , Peróxido de Hidrogênio/farmacologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Estresse Oxidativo , Degeneração Macular/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
3.
BMC Genomics ; 23(1): 539, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35883037

RESUMO

BACKGROUND: Long noncoding RNAs (lncRNAs) are emerging as a class of genes whose importance has yet to be fully realized. It is becoming clear that the primary function of lncRNAs is to regulate gene expression, and they do so through a variety of mechanisms that are critically tied to their subcellular localization. Although most lncRNAs are poorly understood, mapping lncRNA subcellular localization can provide a foundation for understanding these mechanisms. RESULTS: Here, we present an initial step toward uncovering the localization landscape of lncRNAs in the human retinal pigment epithelium (RPE) using high throughput RNA-Sequencing (RNA-Seq). To do this, we differentiated human induced pluripotent stem cells (iPSCs) into RPE, isolated RNA from nuclear and cytoplasmic fractions, and performed RNA-Seq on both. Furthermore, we investigated lncRNA localization changes that occur in response to oxidative stress. We discovered that, under normal conditions, most lncRNAs are seen in both the nucleus and the cytoplasm to a similar degree, but of the transcripts that are highly enriched in one compartment, far more are nuclear than cytoplasmic. Interestingly, under oxidative stress conditions, we observed an increase in lncRNA localization in both nuclear and cytoplasmic fractions. In addition, we found that nuclear localization was partially attributable to the presence of previously described nuclear retention motifs, while adenosine to inosine (A-to-I) RNA editing appeared to play a very minimal role. CONCLUSIONS: Our findings map lncRNA localization in the RPE and provide two avenues for future research: 1) how lncRNAs function in the RPE, and 2) how one environmental factor, in isolation, may potentially play a role in retinal disease pathogenesis through altered lncRNA localization.


Assuntos
Células-Tronco Pluripotentes Induzidas , RNA Longo não Codificante , Núcleo Celular/genética , Núcleo Celular/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Análise de Sequência de RNA
4.
PLoS One ; 12(8): e0183939, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28837677

RESUMO

Long intervening non-coding RNAs (lincRNAs) are increasingly being implicated as important factors in many aspects of cellular development, function, and disease, but remain poorly understood. In this study, we examine the human retinal pigment epithelium (RPE) lincRNA transcriptome using RNA-Seq data generated from human fetal RPE (fRPE), RPE derived from human induced pluripotent stem cells (iPS-RPE), and undifferentiated iPS (iPS). In addition, we determine the suitability of iPS-RPE, from a transcriptome standpoint, as a model for use in future studies of lincRNA structure and function. A comparison of gene and isoform expression across the whole transcriptome shows only minimal differences between all sample types, though fRPE and iPS-RPE show higher concordance than either shows with iPS. Notably, RPE signature genes show the highest degree of fRPE to iPS-RPE concordance, indicating that iPS-RPE cells provide a suitable model for use in future studies. An analysis of lincRNAs demonstrates high concordance between fRPE and iPS-RPE, but low concordance between either RPE and iPS. While most lincRNAs are expressed at low levels (RPKM < 10), there is a high degree of concordance among replicates within each sample type, suggesting the expression is consistent, even at levels subject to high variability. Finally, we identified and annotated 180 putative novel genes in the fRPE samples, a majority of which are also expressed in the iPS-RPE. Overall, this study represents the first characterization of lincRNA expression in the human RPE, and provides a model for studying the role lincRNAs play in RPE development, function, and disease.


Assuntos
Diferenciação Celular , Células-Tronco Pluripotentes Induzidas/metabolismo , RNA Longo não Codificante/genética , Epitélio Pigmentado da Retina/metabolismo , Células Cultivadas , Perfilação da Expressão Gênica , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , RNA Longo não Codificante/química , Transcriptoma
5.
Cold Spring Harb Perspect Med ; 5(9): a017152, 2015 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-25722474

RESUMO

Over the past several years, rapid technological advances have allowed for a dramatic increase in our knowledge and understanding of the transcriptional landscape, because of the ability to study gene expression in greater depth and with more detail than previously possible. To this end, RNA-Seq has quickly become one of the most widely used methods for studying transcriptomes of tissues and individual cells. Unlike previously favored analysis methods, RNA-Seq is extremely high-throughput, and is not dependent on an annotated transcriptome, laying the foundation for novel genetic discovery. Additionally, RNA-Seq derived transcriptomes provide a basis for widening the scope of research to identify potential targets in the treatment of retinal disease.


Assuntos
Sequência de Bases/genética , Doenças Retinianas/genética , Análise de Sequência de RNA/métodos , Animais , Biologia Computacional/métodos , Biologia Computacional/tendências , Modelos Animais de Doenças , Etiquetas de Sequências Expressas , Previsões , Biblioteca Gênica , Humanos , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Análise de Sequência com Séries de Oligonucleotídeos/tendências , Análise de Sequência de RNA/tendências , Transcriptoma/genética
6.
Genet Med ; 17(4): 253-261, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25412400

RESUMO

PURPOSE: Next-generation sequencing-based methods are being adopted broadly for genetic diagnostic testing, but the performance characteristics of these techniques with regard to test accuracy and reproducibility have not been fully defined. METHODS: We developed a targeted enrichment and next-generation sequencing approach for genetic diagnostic testing of patients with inherited eye disorders, including inherited retinal degenerations, optic atrophy, and glaucoma. In preparation for providing this genetic eye disease (GEDi) test on a CLIA-certified basis, we performed experiments to measure the sensitivity, specificity, and reproducibility, as well as the clinical sensitivity, of the test. RESULTS: The GEDi test is highly reproducible and accurate, with sensitivity and specificity of 97.9 and 100%, respectively, for single-nucleotide variant detection. The sensitivity for variant detection was notably better than the 88.3% achieved by whole-exome sequencing using the same metrics, because of better coverage of targeted genes in the GEDi test as compared with a commercially available exome capture set. Prospective testing of 192 patients with inherited retinal degenerations indicated that the clinical sensitivity of the GEDi test is high, with a diagnostic rate of 51%. CONCLUSION: Based on quantified performance metrics, the data suggest that selective targeted enrichment is preferable to whole-exome sequencing for genetic diagnostic testing.


Assuntos
Oftalmopatias/diagnóstico , Oftalmopatias/genética , Testes Genéticos , Sequenciamento de Nucleotídeos em Larga Escala , Exoma/genética , Oftalmopatias/patologia , Genótipo , Humanos , Polimorfismo de Nucleotídeo Único , Estudos Prospectivos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...