Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oncotarget ; 10(62): 6723-6738, 2019 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-31803365

RESUMO

APO866 is a small molecule drug that specifically inhibits nicotinamide phosphoribosyltransferase (NAMPT), a key enzyme involved in nicotinamide adenine dinucleotide (NAD) biosynthesis from the natural precursor nicotinamide. Although, the antitumor activity of APO866 on various types of cancer models has been reported, information regarding mechanisms by which APO866 exerts its cytotoxic effects is not well defined. Here we show that APO866 induces a strong, time-dependent increase in highly reactive ROS, nitric oxide, cytosolic/mitochondrial superoxide anions and hydrogen peroxide. We provide evidence that APO866-mediated ROS production is modulated by PARP1 and triggers cell death through mitochondria depolarization and ATP loss. Genetic or pharmacologic inhibition of PARP1 prevented hydrogen peroxide accumulation, caspase activation, mitochondria depolarization, ATP loss and abrogates APO866-induced cell death, suggesting that the integrity of PARP1 status is required for cell death. Conversely, PARP1 activating drugs enhanced the anti-leukemia activity of APO866 Collectively, our studies show that APO866 induces ROS/RNS productions, which mediate its anti-leukemia effect. These results support testing new combinatorial strategies to enhance the antitumor activities of APO866.

2.
Eur J Med Chem ; 150: 457-478, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29547833

RESUMO

We have synthesized a wide array of structurally related amphiphilic compounds, containing a functionalized pyrrolidine polar group coupled to different ether-linked hydrocarbon chains, to generate novel structures with antitumor activity. These newly synthesized amphiphilic pyrrolidine-derived compounds were classified in three different sub-libraries regarding the number of hydroxyl groups substituting the pyrrolidine moiety at C3 and C4. Pyrrolidine compounds with one or none hydroxyl groups showed a potent cell killing activity against pancreatic cancer cells, but they lacked selectivity for tumor cells. Pyrrolidine compounds with two hydroxyl groups induced cell death in a wide variety of pancreatic cancer cell lines, and they were somewhat less cytotoxic to normal non-tumor cells. Among these latter compounds, the diol-derived pyrrolidine 20 ((2R,3R,4S)-2-{(9Z)-hexadec-9-en-1-yloxy]methyl}pyrrolidine-3,4-diol) induced autophagy and a potent apoptotic response in pancreatic ductal adenocarcinoma cells, which was inhibited by Bcl-XL overexpression and by caspase inhibition, in a way similar to that of the amphiphilic ether lipid edelfosine, with which it was compared. Pharmacological and genetic inhibition of autophagy potentiated 20-mediated apoptosis. These structure-activity relationship studies point out the importance of the diol polar group and aliphatic side chain of 20 in promoting apoptosis against pancreatic cancer cells in a rather controlled way, and some additional subtle modifications were found to be potential modulators of the cytotoxic activity.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Pancreáticas/tratamento farmacológico , Pirrolidinas/farmacologia , Tensoativos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Morte Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Neoplasias Pancreáticas/patologia , Pirrolidinas/síntese química , Pirrolidinas/química , Relação Estrutura-Atividade , Tensoativos/síntese química , Tensoativos/química
3.
Biochimie ; 116: 141-53, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26188110

RESUMO

Pancreatic cancer (PC) is one of the most lethal human malignancies and a major health problem. Patients diagnosed with PC and treated with conventional approaches have an overall 5-year survival rate of less than 5%. Novel strategies are needed to treat this disease. Herein, we propose a combinatorial strategy that targets two unrelated metabolic enzymes overexpressed in PC cells: NAD(P)H: quinone oxidoreductase-1 (NQO1) and nicotinamide phosphoribosyl transferase (NAMPT) using ß-lapachone (BL) and APO866, respectively. We show that BL tremendously enhances the antitumor activity of APO866 on various PC cell lines without affecting normal cells, in a PARP-1 dependent manner. The chemopotentiation of APO866 with BL was characterized by the following: (i) nicotinamide adenine dinucleotide (NAD) depletion; (ii) catalase (CAT) degradation; (iii) excessive H2O2 production; (iv) dramatic drop of mitochondrial membrane potential (MMP); and finally (v) autophagic-associated cell death. H2O2 production, loss of MMP and cell death (but not NAD depletion) were abrogated by exogenous supplementation with CAT or pharmacological or genetic inhibition of PARP-1. Our data demonstrates that the combination of a non-lethal dose of BL and low dose of APO866 optimizes significantly cell death on various PC lines over both compounds given separately and open new and promising combination in PC therapy.


Assuntos
Acrilamidas/farmacologia , Naftoquinonas/farmacologia , Neoplasias Pancreáticas/metabolismo , Piperidinas/farmacologia , Poli(ADP-Ribose) Polimerases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Humanos , Immunoblotting , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Poli(ADP-Ribose) Polimerase-1
4.
J Hematol Oncol ; 7: 33, 2014 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-24731302

RESUMO

BACKGROUND: CD19 is a B cell lineage specific surface receptor whose broad expression, from pro-B cells to early plasma cells, makes it an attractive target for the immunotherapy of B cell malignancies. In this study we present the generation of a novel humanized anti-CD19 monoclonal antibody (mAb), GBR 401, and investigate its therapeutic potential on human B cell malignancies. METHODS: GBR 401 was partially defucosylated in order to enhance its cytotoxic function. We analyzed the in vitro depleting effects of GBR 401 against B cell lines and primary malignant B cells from patients in the presence or in absence of purified NK cells isolated from healthy donors. In vivo, the antibody dependent cellular cytotoxicity (ADCC) efficacy of GBR 401 was assessed in a B cell depletion model consisting of SCID mice injected with healthy human donor PBMC, and a malignant B cell depletion model where SCID mice are xenografted with both primary human B-CLL tumors and heterologous human NK cells. Furthermore, the anti-tumor activity of GBR 401 was also evaluated in a xenochimeric mouse model of human Burkitt lymphoma using mice xenografted intravenously with Raji cells. Pharmacological inhibition tests were used to characterize the mechanism of the cell death induced by GBR 401. RESULTS: GBR 401 exerts a potent in vitro and in vivo cytotoxic activity against primary samples from patients representing various B-cell malignancies. GBR 401 elicits a markedly higher level of ADCC on primary malignant B cells when compared to fucosylated similar mAb and to Rituximab, the current anti-CD20 mAb standard immunotherapeutic treatment for B cell malignancies, showing killing at 500 times lower concentrations. Of interest, GBR 401 also exhibits a potent direct killing effect in different malignant B cell lines that involves homotypic aggregation mediated by actin relocalization. CONCLUSION: These results contribute to consolidate clinical interest in developing GBR 401 for treatment of hematopoietic B cell malignancies, particularly for patients refractory to anti-CD20 mAb therapies.


Assuntos
Anticorpos Monoclonais/farmacologia , Antígenos CD19/imunologia , Linfoma de Burkitt/tratamento farmacológico , Animais , Anticorpos Monoclonais/imunologia , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos SCID , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Autophagy ; 10(4): 603-17, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24487122

RESUMO

APO866, an inhibitor of NAD biosynthesis, exhibits potent antitumor properties in various malignancies. Recently, it has been shown that APO866 induces apoptosis and autophagy in human hematological cancer cells, but the role of autophagy in APO866-induced cell death remains unclear. Here, we report studies on the molecular mechanisms underlying APO866-induced cell death with emphasis on autophagy. Treatment of leukemia and lymphoma cells with APO866 induced both autophagy, as evidenced by an increase in autophagosome formation and in SQSTM1/p62 degradation, but also increased caspase activation as revealed by CASP3/caspase 3 cleavage. As an underlying mechanism, APO866-mediated autophagy was found to deplete CAT/catalase, a reactive oxygen species (ROS) scavenger, thus promoting ROS production and cell death. Inhibition of autophagy by ATG5 or ATG7 silencing prevented CAT degradation, ROS production, caspase activation, and APO866-induced cell death. Finally, supplementation with exogenous CAT also abolished APO866 cytotoxic activity. Altogether, our results indicated that autophagy is essential for APO866 cytotoxic activity on cells from hematological malignancies and also indicate an autophagy-dependent CAT degradation, a novel mechanism for APO866-mediated cell killing. Autophagy-modulating approaches could be a new way to enhance the antitumor activity of APO866 and related agents.


Assuntos
Acrilamidas/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Leucemia/patologia , Linfoma/patologia , NAD/antagonistas & inibidores , Piperidinas/farmacologia , Caspase 3/metabolismo , Linhagem Celular Tumoral , Humanos , Leucemia/tratamento farmacológico , Linfoma/tratamento farmacológico , NAD/biossíntese , Espécies Reativas de Oxigênio/metabolismo
6.
Leuk Lymphoma ; 55(9): 2141-50, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24283753

RESUMO

APO866 is an inhibitor of nicotinamide adenine dinucleotide (NAD) biosynthesis that exhibits potent anti-lymphoma activity. Rituximab (RTX), an anti-CD20 antibody, kills lymphoma cells by direct apoptosis and antibody- and complement-dependent cell-mediated cytotoxicities, and has clinical efficacy in non-Hodgkin cell lymphomas. In the present study, we evaluated whether RTX could potentiate APO866-induced human B-lymphoma cell death and shed light on death-mediated mechanisms associated with this drug combination. We found that RTX significantly increases APO866-induced death in lymphoma cells from patients and lines. Mechanisms include enhancement of autophagy-mediated cell death, activation of caspase 3 and exacerbation of mitochondrial depolarization, but not increase of reactive oxygen species (ROS) production, when compared with those induced by each drug alone. In vivo, combined administration of APO866 with RTX in a laboratory model of human aggressive lymphoma significantly decreased tumor burden and prolonged survival over single-agent treatment. Our study demonstrates that the combination of RTX and APO866 optimizes B-cell lymphoma apoptosis and therapeutic efficacy over both compounds administered separately.


Assuntos
Acrilamidas/farmacologia , Anticorpos Monoclonais Murinos/farmacologia , Antineoplásicos/farmacologia , Piperidinas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Vias Biossintéticas/efeitos dos fármacos , Caspase 3/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Sinergismo Farmacológico , Humanos , Linfoma/tratamento farmacológico , Linfoma/mortalidade , Linfoma/patologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos SCID , NAD/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Rituximab , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Bioorg Med Chem ; 19(24): 7720-7, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-22079865

RESUMO

New derivatives of 1,4-dideoxy-1,4-imino-D-ribitol have been prepared and evaluated for their cytotoxicity on solid and haematological malignancies. 1,4-Dideoxy-5-O-[(9Z)-octadec-9-en-1-yl]-1,4-imino-D-ribitol (13, IC(50) ∼2 µM) and its C(18)-analogues (IC(50) <10 µM) are cytotoxic toward SKBR3 (breast cancer) cells. 13 also inhibits (IC(50) ∼8 µM) growth of JURKAT cells.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Ribitol/análogos & derivados , Ribitol/farmacologia , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Feminino , Humanos , Células Jurkat , Neoplasias/tratamento farmacológico , Relação Estrutura-Atividade
8.
Blood ; 113(14): 3276-86, 2009 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-19196867

RESUMO

APO866 inhibits nicotinamide phosphoribosyltransferase (NMPRTase), a key enzyme involved in nicotinamide adenine dinucleotide (NAD) biosynthesis from the natural precursor nicotinamide. Intracellular NAD is essential for cell survival, and NAD depletion resulting from APO866 treatment elicits tumor cell death. Here, we determine the in vitro and in vivo sensitivities of hematologic cancer cells to APO866 using a panel of cell lines (n = 45) and primary cells (n = 32). Most cancer cells (acute myeloid leukemia [AML], acute lymphoblastic leukemia [ALL], mantle cell lymphoma [MCL], chronic lymphocytic leukemia [CLL], and T-cell lymphoma), but not normal hematopoietic progenitor cells, were sensitive to low concentrations of APO866 as measured in cytotoxicity and clonogenic assays. Treatment with APO866 decreased intracellular NAD and adenosine triphosphate (ATP) at 24 hours and 48 to72 hours, respectively. The NAD depletion led to cell death. At 96 hours, APO866-mediated cell death occurred in a caspase-independent mode, and was associated with mitochondrial dysfunction and autophagy. Further, in vivo administration of APO866 as a single agent prevented and abrogated tumor growth in animal models of human AML, lymphoblastic lymphoma, and leukemia without significant toxicity to the animals. The results support the potential of APO866 for treating hematologic malignancies.


Assuntos
Acrilamidas/uso terapêutico , Antineoplásicos/uso terapêutico , Citocinas/antagonistas & inibidores , Neoplasias Hematológicas/tratamento farmacológico , NAD/biossíntese , Nicotinamida Fosforribosiltransferase/antagonistas & inibidores , Piperidinas/uso terapêutico , Acrilamidas/farmacologia , Animais , Antineoplásicos/farmacologia , Morte Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células HL-60 , Neoplasias Hematológicas/metabolismo , Humanos , Células Jurkat , Células K562 , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , NAD/efeitos dos fármacos , Piperidinas/farmacologia , Células Tumorais Cultivadas , Células U937 , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Leuk Res ; 30(4): 415-26, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16181674

RESUMO

We developed and tested a potent hexameric Fas agonist, termed MegaFasL, for its cytotoxic effects on a panel of human haematopoietic malignant cells and healthy human haematopoietic progenitor cells (CD34+CD38low). Results demonstrated that MegaFasL induced apoptosis in cell lines and primary cells representing multiple myeloma (MM), acute myeloid leukaemia (AML), acute lymphoblastic leukaemia (ALL) and Burkitt's lymphoma. Cells from a chronic myeloid leukaemia (CML) line and from patients with chronic lymphocytic leukaemia (CLL) were resistant. Furthermore, CD34+CD38low progenitor cells were also resistant to MegaFasL. The data indicate that MegaFasL could be a highly efficient therapeutic agent ex vivo or potentially in vivo.


Assuntos
Apoptose , Neoplasias Hematológicas/patologia , Receptor fas/efeitos dos fármacos , Caspases/metabolismo , Linhagem Celular Tumoral , Ativação Enzimática , Neoplasias Hematológicas/enzimologia , Humanos
10.
Xenotransplantation ; 12(1): 38-48, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15598272

RESUMO

BACKGROUND: Models consisting of human immune cells in suspension transferred to severe combined immune deficient (SCID) mice have been invaluable for studying immune response, autoimmunity, and lymphomagenesis. The dissemination of human cells within the mouse body hampers immune functionality with time and favorites the development of human graft vs. mouse host (GvH) disease. To circumvent these limitations we surgically implanted tonsil pieces subcutaneously in SCID animals (hu-ton-SCID mice). Recall humoral responses was elicited and animals did not suffer from signs of GvH disease. A detailed cell subset and cell activation analysis of implants has not yet been reported. METHODS: Implants from 86 hu-ton-SCID mice were evaluated by immunohistochemistry and flow cytometry analyses to assess human lymphoid cell subpopulation surviving with time after implantation, and to evaluate status of human cell activation. RESULTS: B cells persist over 3 months in implants. The proportion of class and type-specific Ig+ cells varied between implants, but as a whole IgG+ cells were more abundant than IgA+, and IgM+ cells, and kappa+ cells predominated over lambda+ cells. The mean proportions of these cells resemble those in the original tonsil. Fine analysis of CD19+ B cells demonstrated no expansion of activated (CD5+, CD23+, CD69+) B cells in implants compared with tonsils, and a decrease of CD19+CD77+ B cells corresponding to a centroblastic phenotype, which is consistent with the disappearance of follicular structure in implants. Double positive CD20+CD27+ memory B cells were detected in implants by immunohistochemistry. T cell CD4+CD8-/CD4-CD8+ ratios were about 4 in implants, that is similar to those in tonsils, and there was no expansion of CD3+CD4+CD8+ and of CD3+CD4-CD8- T-cell subpopulations. T cells activation markers (CD25, CD69) were similarly expressed in implants and tonsils, and implants contained cells with a memory T cell phenotype (CD45RO). Finally cells within implants depicted a low rate of proliferation when assessed by Ki-67 expression levels. CONCLUSIONS: Compared with original tonsils, tonsil implants in hu-ton-SCID mice lose the germinal center architecture, which is correlated with the decrease of CD77+ B cells, but conserve T and B cell subpopulation diversity, notably memory cells. In addition, implant T and B cells are not differently activated when compared with those in original tonsils and do not proliferate extensively. These observations indicate indirectly absence of GvH reaction at the cellular level in this model. Collectively, the detailed implant cellular characterization in the hu-ton-SCID model provides a strong rationale for the use of this model in the study of human recall antibody response.


Assuntos
Tonsila Palatina/imunologia , Tonsila Palatina/transplante , Transplante Heterólogo , Animais , Linfócitos B/imunologia , Biomarcadores , Citometria de Fluxo , Sobrevivência de Enxerto , Humanos , Imuno-Histoquímica , Memória Imunológica , Camundongos , Camundongos SCID , Linfócitos T/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...