Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(48): 45326-45336, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38075748

RESUMO

Pretargeted concept in positron emission tomography (PET) together with bioorthogonal chemistry is an elegant solution to study processes with slow pharmacokinetics by utilizing radiotracers labeled with short-lived radionuclides. Namely, radiotracers based on tetrazine ligation with trans-cyclooctene (TCO) via the inverse electron demand Diels-Alder (IEDDA) reaction have become a state-of-the-art for the pretargeted PET imaging. For radiolabeling of tetrazine scaffolds, indirect radiofluorination methods are often preferred, as tetrazines are vulnerable to harsh conditions typically necessary for the direct radiofluorination. 18F-Fluoroglycosylation is an indirect radiofluorination method, which allows the introduction of a widely accessible glucose analog 2-[18F]fluoro-2-deoxy-d-glucose ([18F]FDG) to aminooxy-functionalized precursors via oxime formation. Here, we report the biological evaluation of [18F]FDG-Tz as a tracer for pretargeted PET imaging of TCO-functionalized molecular spherical nucleic acids (MSNA) against human epidermal growth factor receptor 2 (HER2) mRNA. The oxime ether formation between [18F]FDG and tetrazine oxyamine resulted in [18F]FDG-Tz with high radiochemical purity (>99%) and moderate yields (6.5 ± 3.6%, n = 5). Biological evaluation of [18F]FDG-Tz in healthy mice indicated favorable pharmacokinetics with quick blood clearance, urinary excretion as the main elimination route, and the absence of GLUT1 transportation. The successful pretargeted experiments with TCO-functionalized MSNA revealed higher tumor uptake compared to preclicked MSNA in HER2-expressing human breast cancer xenograft-bearing mice.

2.
Mol Pharm ; 20(10): 5043-5051, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37531591

RESUMO

18F-Labeled [60]fullerene-based molecular spherical nucleic acids (MSNAs), consisting of a human epidermal growth factor receptor 2 (HER2) mRNA antisense oligonucleotide sequence with a native phosphodiester and phosphorothioate backbone, were synthesized, site-specifically labeled with a positron emitting fluorine-18 and intravenously administrated via tail vein to HER2 expressing HCC1954 tumor-bearing mice. The biodistribution of the MSNAs was monitored in vivo by positron emission tomography/computed tomography (PET/CT) imaging. MSNA with a native phosphodiester backbone (MSNA-PO) was prone to rapid nuclease-mediated degradation, whereas the corresponding phosphorothioate analogue (MSNA-PS) with improved enzymatic stability showed an interesting biodistribution profile in vivo. One hour after the injection, majority of the radioactivity was observed in spleen and liver but also in blood with an average tumor-to-muscle ratio of 2. The prolonged radioactivity in blood circulation may open possibilities to the targeted delivery of the MSNAs.


Assuntos
Fulerenos , Neoplasias , Ácidos Nucleicos , Camundongos , Humanos , Animais , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Distribuição Tecidual , Tomografia por Emissão de Pósitrons/métodos , Neoplasias/diagnóstico por imagem , Radioisótopos de Flúor , Linhagem Celular Tumoral
3.
Elife ; 112022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36169304

RESUMO

Kinetoplastids are a highly divergent lineage of eukaryotes with unusual mechanisms for regulating gene expression. We previously surveyed 65 putative chromatin factors in the kinetoplastid Trypanosoma brucei. Our analyses revealed that the predicted histone methyltransferase SET27 and the Chromodomain protein CRD1 are tightly concentrated at RNAPII transcription start regions (TSRs). Here, we report that SET27 and CRD1, together with four previously uncharacterized constituents, form the SET27 promoter-associated regulatory complex (SPARC), which is specifically enriched at TSRs. SET27 loss leads to aberrant RNAPII recruitment to promoter sites, accumulation of polyadenylated transcripts upstream of normal transcription start sites, and conversion of some normally unidirectional promoters to bidirectional promoters. Transcriptome analysis in the absence of SET27 revealed upregulated mRNA expression in the vicinity of SPARC peaks within the main body of chromosomes in addition to derepression of genes encoding variant surface glycoproteins (VSGs) located in subtelomeric regions. These analyses uncover a novel chromatin-associated complex required to establish accurate promoter position and directionality.


Assuntos
Trypanosoma brucei brucei , Cromatina/metabolismo , Heterocromatina/metabolismo , Histona Metiltransferases/genética , RNA Polimerase II/metabolismo , RNA Mensageiro/metabolismo , Transcrição Gênica , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo , Glicoproteínas Variantes de Superfície de Trypanosoma/genética
4.
Bioconjug Chem ; 33(7): 1393-1404, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35709482

RESUMO

Radiolabeled peptides have emerged as highly specific agents for targeting receptors expressed in tumors for therapeutic and diagnostic purposes. Peptides developed for positron emission tomography (PET) are typically radiolabeled using prosthetic groups or bifunctional chelators for fast "kit-like" incorporation of the radionuclide into the structure. A novel [18F]alkylammoniomethyltrifluoroborate ([18F]AmBF3) tetrazine (Tz), [18F]AmBF3-Tz, was developed for the [18F]fluorination of trans-cyclooctene (TCO)-modified biomolecules using Tyr3-octreotides (TOCs) as model peptides. [18F]AmBF3-Tz (Am = 15.4 ± 9.2 GBq/µmol, n = 14) was evaluated in healthy mice by ex vivo biodistribution and PET/computed tomography (CT), where the radiolabel in the prosthetic group was found stable in vivo, indicated by the low bone uptake in tibia (0.4 ± 0.1% ID/g, t = 270 min). TCO-TOCs tailored with polyethylene glycol (PEG) linkers were radiolabeled with [18F]AmBF3-Tz, forming two new tracers, [18F]AmBF3-PEG4-TOC (Am = 2.8 ± 1.8 GBq/µmol, n = 3) and [18F]AmBF3-PEG7-TOC (Am of 6.0 ± 3.4 GBq/µmol, n = 13), which were evaluated by cell uptake studies and ex vivo biodistribution in subcutaneous AR42J rat pancreatic carcinoma tumor-bearing nude mice. The tracer demonstrating superior behavior ex vivo, the [18F]AmBF3-PEG7-TOC, was further evaluated with PET/CT, where the tracer provided clear tumor visualization (SUVbaseline = 1.01 ± 0.07, vs SUVblocked = 0.76 ± 0.04) at 25 min post injection. The novel AmBF3-Tz demonstrated that it offers potential as a prosthetic group for rapid radiolabeling of biomolecules in mild conditions using bioorthogonal chemistry.


Assuntos
Compostos Heterocíclicos , Octreotida , Animais , Linhagem Celular Tumoral , Radioisótopos de Flúor/química , Camundongos , Camundongos Nus , Neoplasias Pancreáticas , Polietilenoglicóis , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/química , Ratos , Distribuição Tecidual , Neoplasias Pancreáticas
5.
Genome Res ; 31(11): 2138-2154, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34407985

RESUMO

Nucleosomes composed of histones are the fundamental units around which DNA is wrapped to form chromatin. Transcriptionally active euchromatin or repressive heterochromatin is regulated in part by the addition or removal of histone post-translational modifications (PTMs) by "writer" and "eraser" enzymes, respectively. Nucleosomal PTMs are recognized by a variety of "reader" proteins that alter gene expression accordingly. The histone tails of the evolutionarily divergent eukaryotic parasite Trypanosoma brucei have atypical sequences and PTMs distinct from those often considered universally conserved. Here we identify 65 predicted readers, writers, and erasers of histone acetylation and methylation encoded in the T. brucei genome and, by epitope tagging, systemically localize 60 of them in the parasite's bloodstream form. ChIP-seq shows that 15 candidate proteins associate with regions of RNAPII transcription initiation. Eight other proteins show a distinct distribution with specific peaks at a subset of RNAPII transcription termination regions marked by RNAPIII-transcribed tRNA and snRNA genes. Proteomic analyses identify distinct protein interaction networks comprising known chromatin regulators and novel trypanosome-specific components. Notably, several SET- and Bromo-domain protein networks suggest parallels to RNAPII promoter-associated complexes in conventional eukaryotes. Further, we identify likely components of TbSWR1 and TbNuA4 complexes whose enrichment coincides with the SWR1-C exchange substrate H2A.Z at RNAPII transcription start regions. The systematic approach used provides details of the composition and organization of the chromatin regulatory machinery in T. brucei and establishes a route to explore divergence from eukaryotic norms in an evolutionarily ancient but experimentally accessible eukaryote.


Assuntos
Cromatina , Trypanosoma brucei brucei , Cromatina/genética , Cromatina/metabolismo , Nucleossomos/metabolismo , Mapas de Interação de Proteínas , Proteômica , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo
6.
Genes Dev ; 34(3-4): 226-238, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31919190

RESUMO

Centromeres are maintained epigenetically by the presence of CENP-A, an evolutionarily conserved histone H3 variant, which directs kinetochore assembly and hence centromere function. To identify factors that promote assembly of CENP-A chromatin, we affinity-selected solubilized fission yeast CENP-ACnp1 chromatin. All subunits of the Ino80 complex were enriched, including the auxiliary subunit Hap2. Chromatin association of Hap2 is Ies4-dependent. In addition to a role in maintenance of CENP-ACnp1 chromatin integrity at endogenous centromeres, Hap2 is required for de novo assembly of CENP-ACnp1 chromatin on naïve centromere DNA and promotes H3 turnover on centromere regions and other loci prone to CENP-ACnp1 deposition. Prior to CENP-ACnp1 chromatin assembly, Hap2 facilitates transcription from centromere DNA. These analyses suggest that Hap2-Ino80 destabilizes H3 nucleosomes on centromere DNA through transcription-coupled histone H3 turnover, driving the replacement of resident H3 nucleosomes with CENP-ACnp1 nucleosomes. These inherent properties define centromere DNA by directing a program that mediates CENP-ACnp1 assembly on appropriate sequences.


Assuntos
Cromatina/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Transcrição Gênica/fisiologia , Cromatina/genética , Proteínas Cromossômicas não Histona/metabolismo , Cromossomos Fúngicos/genética , Cromossomos Fúngicos/metabolismo , DNA Fúngico/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Fatores de Transcrição/metabolismo
7.
Cell Res ; 29(3): 221-232, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30617251

RESUMO

Several developmental stages of spermatogenesis are transcriptionally quiescent which presents major challenges associated with the regulation of gene expression. Here we identify that the zygotene to pachytene transition is not only associated with the resumption of transcription but also a wave of programmed mRNA degradation that is essential for meiotic progression. We explored whether terminal uridydyl transferase 4- (TUT4-) or TUT7-mediated 3' mRNA uridylation contributes to this wave of mRNA degradation during pachynema. Indeed, both TUT4 and TUT7 are expressed throughout most of spermatogenesis, however, loss of either TUT4 or TUT7 does not have any major impact upon spermatogenesis. Combined TUT4 and TUT7 (TUT4/7) deficiency results in embryonic growth defects, while conditional gene targeting revealed an essential role for TUT4/7 in pachytene progression. Loss of TUT4/7 results in the reduction of miRNA, piRNA and mRNA 3' uridylation. Although this reduction does not greatly alter miRNA or piRNA expression, TUT4/7-mediated uridylation is required for the clearance of many zygotene-expressed transcripts in pachytene cells. We find that TUT4/7-regulated transcripts in pachytene spermatocytes are characterized by having long 3' UTRs with length-adjusted enrichment for AU-rich elements. We also observed these features in TUT4/7-regulated maternal transcripts whose dosage was recently shown to be essential for sculpting a functional maternal transcriptome and meiosis. Therefore, mRNA 3' uridylation is a critical determinant of both male and female germline transcriptomes. In conclusion, we have identified a novel requirement for 3' uridylation-programmed zygotene mRNA clearance in pachytene spermatocytes that is essential for male meiotic progression.


Assuntos
Prófase Meiótica I/genética , Estágio Paquíteno/genética , Processamento Pós-Transcricional do RNA/fisiologia , Espermatogênese/genética , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estabilidade de RNA/genética , RNA Mensageiro/genética , UDPglucose-Hexose-1-Fosfato Uridiltransferase/metabolismo
8.
Nat Genet ; 51(1): 96-105, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30478443

RESUMO

DNA methylation and Polycomb are key factors in the establishment of vertebrate cellular identity and fate. Here we report de novo missense mutations in DNMT3A, which encodes the DNA methyltransferase DNMT3A. These mutations cause microcephalic dwarfism, a hypocellular disorder of extreme global growth failure. Substitutions in the PWWP domain abrogate binding to the histone modifications H3K36me2 and H3K36me3, and alter DNA methylation in patient cells. Polycomb-associated DNA methylation valleys, hypomethylated domains encompassing developmental genes, become methylated with concomitant depletion of H3K27me3 and H3K4me3 bivalent marks. Such de novo DNA methylation occurs during differentiation of Dnmt3aW326R pluripotent cells in vitro, and is also evident in Dnmt3aW326R/+ dwarf mice. We therefore propose that the interaction of the DNMT3A PWWP domain with H3K36me2 and H3K36me3 normally limits DNA methylation of Polycomb-marked regions. Our findings implicate the interplay between DNA methylation and Polycomb at key developmental regulators as a determinant of organism size in mammals.


Assuntos
DNA (Citosina-5-)-Metiltransferases/genética , Metilação de DNA/genética , Nanismo/genética , Mutação com Ganho de Função/genética , Microcefalia/genética , Proteínas do Grupo Polycomb/genética , Animais , Linhagem Celular Tumoral , Células Cultivadas , DNA Metiltransferase 3A , Metilases de Modificação do DNA/genética , Feminino , Células HeLa , Histonas/genética , Humanos , Masculino , Camundongos , Camundongos Transgênicos/genética , Ligação Proteica/genética , Sequências Reguladoras de Ácido Nucleico/genética
9.
Elife ; 62017 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-29027900

RESUMO

Numerous links exist between co-transcriptional RNA processing and the transcribing RNAPII. In particular, pre-mRNA splicing was reported to be associated with slowed RNAPII elongation. Here, we identify a site of ubiquitination (K1246) in the catalytic subunit of RNAPII close to the DNA entry path. Ubiquitination was increased in the absence of the Bre5-Ubp3 ubiquitin protease complex. Bre5 binds RNA in vivo, with a preference for exon 2 regions of intron-containing pre-mRNAs and poly(A) proximal sites. Ubiquitinated RNAPII showed similar enrichment. The absence of Bre5 led to impaired splicing and defects in RNAPII elongation in vivo on a splicing reporter construct. Strains expressing RNAPII with a K1246R mutation showed reduced co-transcriptional splicing. We propose that ubiquinitation of RNAPII is induced by RNA processing events and linked to transcriptional pausing, which is released by Bre5-Ubp3 associated with the nascent transcript.


Assuntos
Domínio Catalítico , RNA Polimerase II/metabolismo , Precursores de RNA/metabolismo , Ubiquitinação , Endopeptidases/metabolismo , Modelos Biológicos , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação de Sentido Incorreto , RNA Polimerase II/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
10.
FEBS J ; 276(13): 3602-17, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19490016

RESUMO

In eukaryotes, two heteroheptameric Sm-like (Lsm) complexes that differ by a single subunit localize to different cellular compartments and have distinct functions in RNA metabolism. The cytoplasmic Lsm1-7p complex promotes mRNA decapping and localizes to processing bodies, whereas the Lsm2-8p complex takes part in a variety of nuclear RNA processing events. The structural features that determine their different functions and localizations are not known. Here, we analyse a range of mutant and hybrid Lsm1 and Lsm8 proteins, shedding light on the relative importance of their various domains in determining their localization and ability to support growth. Although no single domain is either essential or sufficient for cellular localization, the Lsm1p N-terminus may act as part of a nuclear exclusion signal for Lsm1-7p, and the shorter Lsm8p N-terminus contributes to nuclear accumulation of Lsm2-8p. The C-terminal regions seem to play a secondary role in determining localization, with little or no contribution coming from the central Sm domains. The essential Lsm8 protein is remarkably resistant to mutation in terms of supporting viability, whereas Lsm1p appears more sensitive. These findings contribute to our understanding of how two very similar protein complexes can have different properties.


Assuntos
Proteínas de Ligação ao Cap de RNA/metabolismo , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Sobrevivência Celular , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Estrutura Terciária de Proteína , Proteínas de Ligação ao Cap de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Nuclear Pequeno/genética , RNA Nuclear Pequeno/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Ribonucleoproteínas Nucleares Pequenas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Alinhamento de Sequência
11.
Nat Struct Mol Biol ; 14(11): 1077-83, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17934474

RESUMO

Prp8 protein (Prp8p) is a highly conserved pre-mRNA splicing factor and a component of spliceosomal U5 small nuclear ribonucleoproteins (snRNPs). Although it is ubiquitously expressed, mutations in the C terminus of human Prp8p cause the retina-specific disease retinitis pigmentosa (RP). The biogenesis of U5 snRNPs is poorly characterized. We present evidence for a cytoplasmic precursor U5 snRNP in yeast that lacks the mature U5 snRNP component Brr2p and depends on a nuclear localization signal in Prp8p for its efficient nuclear import. The association of Brr2p with the U5 snRNP occurs within the nucleus. RP mutations in Prp8p in yeast result in nuclear accumulation of the precursor U5 snRNP, apparently as a consequence of disrupting the interaction of Prp8p with Brr2p. We therefore propose a novel assembly pathway for U5 snRNP complexes that is disrupted by mutations that cause human RP.


Assuntos
Ribonucleoproteína Nuclear Pequena U5/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Humanos , Hibridização In Situ , Substâncias Macromoleculares/metabolismo , Mutação , Sinais de Localização Nuclear , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , RNA Helicases , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Retinose Pigmentar/metabolismo , Ribonucleoproteína Nuclear Pequena U4-U6 , Ribonucleoproteína Nuclear Pequena U5/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
12.
Mol Cell Biol ; 26(16): 6016-23, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16880513

RESUMO

The Ntr1 and Ntr2 proteins of Saccharomyces cerevisiae have been reported to interact with proteins involved in pre-mRNA splicing, but their roles in the splicing process are unknown. We show here that they associate with a postsplicing complex containing the excised intron and the spliceosomal U2, U5, and U6 snRNAs, supporting a link with a late stage in the pre-mRNA splicing process. Extract from cells that had been metabolically depleted of Ntr1 has low splicing activity and accumulates the excised intron. Also, the level of U4/U6 di-snRNP is increased but those of the free U5 and U6 snRNPs are decreased in Ntr1-depleted extract, and increased levels of U2 and decreased levels of U4 are found associated with the U5 snRNP protein Prp8. These results suggest a requirement for Ntr1 for turnover of the excised intron complex and recycling of snRNPs. Ntr1 interacts directly or indirectly with the intron release factor Prp43 and is required for its association with the excised intron. We propose that Ntr1 promotes release of excised introns from splicing complexes by acting as a spliceosome receptor or RNA-targeting factor for Prp43, possibly assisted by the Ntr2 protein.


Assuntos
RNA Helicases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Spliceossomos/metabolismo , RNA Helicases DEAD-box , Íntrons/genética , Ligação Proteica , Splicing de RNA/genética , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...