Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Commun ; 5(6): fcad306, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38025276

RESUMO

In amyotrophic lateral sclerosis, a disease driven by abnormal transactive response DNA-binding protein of 43 kDa aggregation, CSF may contain pathological species of transactive response DNA-binding protein of 43 kDa contributing to the propagation of pathology and neuronal toxicity. These species, released in part by degenerating neurons, would act as a template for the aggregation of physiological protein contributing to the spread of pathology in the brain and spinal cord. In this study, a robust seed amplification assay was established to assess the presence of seeding-competent transactive response DNA-binding protein of 43 kDa species in CSF of apparently sporadic amyotrophic lateral sclerosis patients. These samples resulted in a significant acceleration of substrate aggregation differentiating the kinetics from healthy controls. In parallel, a second assay was developed to determine the level of target engagement that would be necessary to neutralize such species in human CSF by a therapeutic monoclonal antibody targeting transactive response DNA-binding protein of 43 kDa. For this, evaluation of the pharmacokinetic/pharmacodynamic effect for the monoclonal antibody, ACI-5891.9, in vivo and in vitro confirmed that a CSF concentration of ≍1100 ng/mL would be sufficient for sustained target saturation. Using this concentration in the seed amplification assay, ACI-5891.9 was able to neutralize the transactive response DNA-binding protein of 43 kDa pathogenic seeds derived from amyotrophic lateral sclerosis patient CSF. This translational work adds to the evidence of transmission of transactive response DNA-binding protein of 43 kDa pathology via CSF that could contribute to the non-contiguous pattern of clinical manifestations observed in amyotrophic lateral sclerosis and demonstrates the ability of a therapeutic monoclonal antibody to neutralize the toxic, extracellular seeding-competent transactive response DNA-binding protein of 43 kDa species in the CSF of apparently sporadic amyotrophic lateral sclerosis patients.

2.
bioRxiv ; 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37662269

RESUMO

Background: Dual specificity protein phosphatase 6 (DUSP6) was recently identified as a key hub gene in a causal network that regulates late-onset Alzheimer's disease. Importantly, decreased DUSP6 levels are correlated with an increased clinical dementia rating in human subjects, and DUSP6 levels are additionally decreased in the 5xFAD amyloidopathy mouse model. Methods: AAV5-DUSP6 or AAV5-GFP (control) were stereotactically injected into the dorsal hippocampus (dHc) of female and male 5xFAD or wild type mice to overexpress DUSP6 or GFP. Spatial learning memory of these mice was assessed in the Barnes maze, after which hippocampal tissues were isolated for downstream analysis. Results: Barnes maze testing indicated that DUSP6 overexpression in the dHc of 5xFAD mice improved memory deficits and was associated with reduced amyloid plaque load, Aß 1-40 and Aß 1-42 levels, and amyloid precursor protein processing enzyme BACE1, in male but not in female mice. Microglial activation and microgliosis, which are increased in 5xFAD mice, were significantly reduced by dHc DUSP6 overexpression in both males and females. Transcriptomic profiling of female 5xFAD hippocampus revealed upregulated expression of genes involved in inflammatory and extracellular signal-regulated kinase (ERK) pathways, while dHc DUSP6 overexpression in female 5xFAD mice downregulated a subset of genes in these pathways. A limited number of differentially expressed genes (DEGs) (FDR<0.05) were identified in male mice; gene ontology analysis of DEGs (p<0.05) identified a greater number of synaptic pathways that were regulated by DUSP6 overexpression in male compared to female 5xFAD. Notably, the msh homeobox 3 gene, Msx3 , previously shown to regulate microglial M1/M2 polarization and reduce neuroinflammation, was one of the most robustly upregulated genes in female and male wild type and 5xFAD mice overexpressing DUSP6. Conclusions: In summary, our data indicate that DUSP6 overexpression in dHc reduced amyloid deposition and memory deficits in male but not female 5xFAD mice, whereas reduced neuroinflammation and microglial activation were observed in both males and females. The sex-dependent regulation of synaptic pathways by DUSP6 overexpression, however, correlated with the improvement of spatial memory deficits in male but not female 5xFAD.

3.
MAbs ; 15(1): 2232087, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37408314

RESUMO

Optimal pharmacokinetic (PK) properties of therapeutic monoclonal antibodies (mAbs) are essential to achieve the desired pharmacological benefits in patients. To accomplish this, we followed an approach comprising structure-based mAb charge engineering in conjunction with the use of relevant preclinical models to screen and select humanized candidates with PK suitable for clinical development. Murine mAb targeting TDP-43, ACI-5891, was humanized on a framework (VH1-3/VK2-30) selected based on the highest sequence homology. Since the initial humanized mAb (ACI-5891.1) presented a fast clearance in non-human primates (NHPs), reiteration of humanization on a less basic human framework (VH1-69-2/VK2-28) while retaining high sequence homology was performed. The resulting humanized variant, ACI-5891.9, presented a six-fold reduction in clearance in NHPs resulting in a significant increase in half-life. The observed reduced clearance of ACI-5891.9 was attributed not only to the overall reduction in isoelectric point (pI) by 2 units, but importantly to a more even surface potential. These data confirm the importance and contribution of surface charges to mAb disposition in vivo. Consistent low clearance of ACI-5891.9 in Tg32 mice, a human FcRn transgenic mouse model, further confirmed its utility for early assessment and prediction of human PK. These data demonstrate that mAb surface charge is an important parameter for consideration during the selection and screening of humanized candidates in addition to maintaining the other key physiochemical and target binding characteristics.


Assuntos
Anticorpos Monoclonais , Receptores Fc , Camundongos , Humanos , Animais , Camundongos Transgênicos , Taxa de Depuração Metabólica , Ponto Isoelétrico , Antígenos de Histocompatibilidade Classe I
4.
J Neurosci ; 43(25): 4738-4749, 2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37230765

RESUMO

The impact of tau pathology on sleep microarchitecture features, including slow oscillations, spindles, and their coupling, has been understudied, despite the proposed importance of these electrophysiological features toward learning and memory. Dual orexin receptor antagonists (DORAs) are known to promote sleep, but whether and how they affect sleep microarchitecture in the setting of tauopathy is unknown. In the PS19 mouse model of tauopathy MAPT (microtubule-associated protein tau) P301S (both male and female), young PS19 mice 2-3 months old show a sleep electrophysiology signature with markedly reduced spindle duration and power and elevated slow oscillation (SO) density compared with littermate controls, although there is no significant tau hyperphosphorylation, tangle formation, or neurodegeneration at this age. With aging, there is evidence for sleep disruption in PS19 mice, characterized by reduced REM duration, increased non-REM and REM fragmentation, and more frequent brief arousals at the macrolevel and reduced spindle density, SO density, and spindle-SO coupling at the microlevel. In ∼33% of aged PS19 mice, we unexpectedly observed abnormal goal-directed behaviors in REM, including mastication, paw grasp, and forelimb/hindlimb extension, seemingly consistent with REM behavior disorder (RBD). Oral administration of DORA-12 in aged PS19 mice increased non-REM and REM duration, albeit with shorter bout lengths, and increased spindle density, spindle duration, and SO density without change to spindle-SO coupling, power in either the SO or spindle bands, or the arousal index. We observed a significant effect of DORA-12 on objective measures of RBD, thereby encouraging future exploration of DORA effects on sleep-mediated cognition and RBD treatment.SIGNIFICANCE STATEMENT The specific effect of tauopathy on sleep macroarchitecture and microarchitecture throughout aging remains unknown. Our key findings include the following: (1) the identification of a sleep EEG signature constituting an early biomarker of impending tauopathy; (2) sleep physiology deteriorates with aging that are also markers of off-line cognitive processing; (3) the novel observation that dream enactment behaviors reminiscent of RBD occur, likely the first such observation in a tauopathy model; and (4) a dual orexin receptor antagonist is capable of restoring several of the sleep macroarchitecture and microarchitecture abnormalities.


Assuntos
Transtorno do Comportamento do Sono REM , Tauopatias , Masculino , Feminino , Camundongos , Animais , Antagonistas dos Receptores de Orexina/farmacologia , Sono/fisiologia , Tauopatias/tratamento farmacológico , Fenótipo
5.
Neurobiol Dis ; 179: 106050, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36809847

RESUMO

Effective therapies are urgently needed to safely target TDP-43 pathology as it is closely associated with the onset and development of devastating diseases such as frontotemporal lobar degeneration with TDP-43 pathology (FTLD-TDP) and amyotrophic lateral sclerosis (ALS). In addition, TDP-43 pathology is present as a co-pathology in other neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. Our approach is to develop a TDP-43-specific immunotherapy that exploits Fc gamma-mediated removal mechanisms to limit neuronal damage while maintaining physiological TDP-43 function. Thus, using both in vitro mechanistic studies in conjunction with the rNLS8 and CamKIIa inoculation mouse models of TDP-43 proteinopathy, we identified the key targeting domain in TDP-43 to accomplish these therapeutic objectives. Targeting the C-terminal domain of TDP-43 but not the RNA recognition motifs (RRM) reduces TDP-43 pathology and avoids neuronal loss in vivo. We demonstrate that this rescue is dependent on Fc receptor-mediated immune complex uptake by microglia. Furthermore, monoclonal antibody (mAb) treatment enhances phagocytic capacity of ALS patient-derived microglia, providing a mechanism to restore the compromised phagocytic function in ALS and FTD patients. Importantly, these beneficial effects are achieved while preserving physiological TDP-43 activity. Our findings demonstrate that a mAb targeting the C-terminal domain of TDP-43 limits pathology and neurotoxicity, enabling clearance of misfolded TDP-43 through microglia engagement, and supporting the clinical strategy to target TDP-43 by immunotherapy. SIGNIFICANCE STATEMENT: TDP-43 pathology is associated with various devastating neurodegenerative disorders with high unmet medical needs such as frontotemporal dementia (FTD), amyotrophic lateral sclerosis (ALS) and Alzheimer's disease. Thus, safely and effectively targeting pathological TDP-43 represents a key paradigm for biotechnical research as currently there is little in clinical development. After years of research, we have determined that targeting the C-terminal domain of TDP-43 rescues multiple patho-mechanisms involved in disease progression in two animal models of FTD/ALS. In parallel, importantly, our studies establish that this approach does not alter the physiological functions of this ubiquitously expressed and indispensable protein. Together, our findings substantially contribute to the understanding of TDP-43 pathobiology and support the prioritization for clinical testing of immunotherapy approaches targeting TDP-43.


Assuntos
Doença de Alzheimer , Esclerose Lateral Amiotrófica , Demência Frontotemporal , Doença de Pick , Camundongos , Animais , Esclerose Lateral Amiotrófica/genética , Demência Frontotemporal/genética , Doença de Alzheimer/genética , Neuroproteção , Proteínas de Ligação a DNA/metabolismo , Imunoterapia
6.
Cells ; 11(23)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36497141

RESUMO

Recent multiscale network analyses of banked brains from subjects who died of late-onset sporadic Alzheimer's disease converged on VGF (non-acronymic) as a key hub or driver. Within this computational VGF network, we identified the dual-specificity protein phosphatase 4 (DUSP4) [also known as mitogen-activated protein kinase (MAPK) phosphatase 2] as an important node. Importantly, DUSP4 gene expression, like that of VGF, is downregulated in postmortem Alzheimer's disease (AD) brains. We investigated the roles that this VGF/DUSP4 network plays in the development of learning behavior impairment and neuropathology in the 5xFAD amyloidopathy mouse model. We found reductions in DUSP4 expression in the hippocampi of male AD subjects, correlating with increased CDR scores, and in 4-month-old female and 12-18-month-old male 5xFAD hippocampi. Adeno-associated virus (AAV5)-mediated overexpression of DUSP4 in 5xFAD mouse dorsal hippocampi (dHc) rescued impaired Barnes maze performance in females but not in males, while amyloid loads were reduced in both females and males. Bulk RNA sequencing of the dHc from 5-month-old mice overexpressing DUSP4, and Ingenuity Pathway and Enrichr analyses of differentially expressed genes (DEGs), revealed that DUSP4 reduced gene expression in female 5xFAD mice in neuroinflammatory, interferon-gamma (IFNγ), programmed cell death protein-ligand 1/programmed cell death protein 1 (PD-L1/PD-1), and extracellular signal-regulated kinase (ERK)/MAPK pathways, via which DUSP4 may modulate AD phenotype with gender-specificity.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Proteínas Tirosina Fosfatases , Animais , Feminino , Masculino , Camundongos , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Hipocampo/metabolismo , Proteínas Tirosina Fosfatases/genética , Aprendizagem
7.
Mol Neurodegener ; 17(1): 55, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-36002854

RESUMO

TYROBP (also known as DAP12 or KARAP) is a transmembrane adaptor protein initially described as a receptor-activating subunit component of natural killer (NK) cells. TYROBP is expressed in numerous cell types, including peripheral blood monocytes, macrophages, dendritic cells, and osteoclasts, but a key point of recent interest is related to the critical role played by TYROBP in the function of many receptors expressed on the plasma membrane of microglia. TYROBP is the downstream adaptor and putative signaling partner for several receptors implicated in Alzheimer's disease (AD), including SIRP1ß, CD33, CR3, and TREM2. TYROBP has received much of its current notoriety because of its importance in brain homeostasis by signal transduction across those receptors. In this review, we provide an overview of evidence indicating that the biology of TYROBP extends beyond its interaction with these four ligand-binding ectodomain-intramembranous domain molecules. In addition to reviewing the structure and localization of TYROBP, we discuss our recent progress using mouse models of either cerebral amyloidosis or tauopathy that were engineered to be TYROBP-deficient or TYROBP-overexpressing. Remarkably, constitutively TYROBP-deficient mice provided a model of genetic resilience to either of the defining proteinopathies of AD. Learning behavior and synaptic electrophysiological function were preserved at normal physiological levels even in the face of robust cerebral amyloidosis (in APP/PSEN1;Tyrobp-/- mice) or tauopathy (in MAPTP301S;Tyrobp-/- mice). A fundamental underpinning of the functional synaptic dysfunction associated with each proteotype was an accumulation of complement C1q. TYROBP deficiency prevented C1q accumulation associated with either proteinopathy. Based on these data, we speculate that TYROBP plays a key role in the microglial sensome and the emergence of the disease-associated microglia (DAM) phenotype. TYROBP may also play a key role in the loss of markers of synaptic integrity (e.g., synaptophysin-like immunoreactivity) that has long been held to be the feature of human AD molecular neuropathology that most closely correlates with concurrent clinical cognitive function.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Doença de Alzheimer , Amiloidose , Proteínas de Membrana , Receptores Imunológicos , Tauopatias , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Doença de Alzheimer/metabolismo , Amiloidose/metabolismo , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Microglia/metabolismo , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Tauopatias/metabolismo
8.
Alzheimers Dement ; 17(2): 149-163, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33314529

RESUMO

INTRODUCTION: Microglial TYROBP (DAP12) is a network hub and driver in sporadic late-onset Alzheimer's disease (AD). TYROBP is a cytoplasmic adaptor for TREM2 and other receptors, but little is known about its roles and actions in AD. Herein, we demonstrate that endogenous Tyrobp transcription is specifically increased in recruited microglia. METHODS: Using a novel transgenic mouse overexpressing TYROBP in microglia, we observed a decrease of the amyloid burden and an increase of TAU phosphorylation stoichiometry when crossed with APP/PSEN1 or MAPTP301S mice, respectively. Characterization of these mice revealed Tyrobp-related modulation of apolipoprotein E (Apoe) transcription. We also showed that Tyrobp and Apoe mRNAs were increased in Trem2-null microglia recruited around either amyloid beta deposits or a cortical stab injury. Conversely, microglial Apoe transcription was dramatically diminished when Tyrobp was absent. CONCLUSIONS: Our results provide evidence that TYROBP-APOE signaling does not require TREM2 and could be an initiating step in establishment of the disease-associated microglia (DAM) phenotype.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Doença de Alzheimer/metabolismo , Apolipoproteínas E/genética , Glicoproteínas de Membrana/genética , Camundongos Transgênicos , Microglia/metabolismo , Receptores Imunológicos/genética , Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/fisiologia , Amiloidose/prevenção & controle , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Knockout , Fosforilação , Presenilina-1/fisiologia , Transdução de Sinais , Proteínas tau/metabolismo
9.
Nat Commun ; 11(1): 3942, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32770063

RESUMO

Though discovered over 100 years ago, the molecular foundation of sporadic Alzheimer's disease (AD) remains elusive. To better characterize the complex nature of AD, we constructed multiscale causal networks on a large human AD multi-omics dataset, integrating clinical features of AD, DNA variation, and gene- and protein-expression. These probabilistic causal models enabled detection, prioritization and replication of high-confidence master regulators of AD-associated networks, including the top predicted regulator, VGF. Overexpression of neuropeptide precursor VGF in 5xFAD mice partially rescued beta-amyloid-mediated memory impairment and neuropathology. Molecular validation of network predictions downstream of VGF was also achieved in this AD model, with significant enrichment for homologous genes identified as differentially expressed in 5xFAD brains overexpressing VGF. Our findings support a causal role for VGF in protecting against AD pathogenesis and progression.


Assuntos
Doença de Alzheimer/etiologia , Encéfalo/patologia , Fatores de Crescimento Neural/metabolismo , Mapas de Interação de Proteínas , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Animais , Conjuntos de Dados como Assunto , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Estudo de Associação Genômica Ampla , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Fatores de Crescimento Neural/genética , Mapeamento de Interação de Proteínas , Proteômica
10.
Acta Neuropathol ; 140(3): 295-315, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32666270

RESUMO

MicroRNAs are recognized as important regulators of many facets of physiological brain function while also being implicated in the pathogenesis of several neurological disorders. Dysregulation of miR155 is widely reported across a variety of neurodegenerative conditions, including Alzheimer's disease (AD), Parkinson's disease, amyotrophic lateral sclerosis, and traumatic brain injury. In previous work, we observed that experimentally validated miR155 gene targets were consistently enriched among genes identified as differentially expressed across multiple brain tissue and disease contexts. In particular, we found that human herpesvirus-6A (HHV-6A) suppressed miR155, recapitulating reports of miR155 inhibition by HHV-6A in infected T-cells, thyrocytes, and natural killer cells. In earlier studies, we also reported the effects of constitutive deletion of miR155 on accelerating the accumulation of Aß deposits in 4-month-old APP/PSEN1 mice. Herein, we complete the cumulative characterization of transcriptomic, electrophysiological, neuropathological, and learning behavior profiles from 4-, 8- and 10-month-old WT and APP/PSEN1 mice in the absence or presence of miR155. We also integrated human post-mortem brain RNA-sequences from four independent AD consortium studies, together comprising 928 samples collected from six brain regions. We report that gene expression perturbations associated with miR155 deletion in mouse cortex are in aggregate observed to be concordant with AD-associated changes across these independent human late-onset AD (LOAD) data sets, supporting the relevance of our findings to human disease. LOAD has recently been formulated as the clinicopathological manifestation of a multiplex of genetic underpinnings and pathophysiological mechanisms. Our accumulated data are consistent with such a formulation, indicating that miR155 may be uniquely positioned at the intersection of at least four components of this LOAD "multiplex": (1) innate immune response pathways; (2) viral response gene networks; (3) synaptic pathology; and (4) proamyloidogenic pathways involving the amyloid ß peptide (Aß).


Assuntos
Doença de Alzheimer/genética , Encéfalo/patologia , MicroRNAs/genética , Transcriptoma/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Redes Reguladoras de Genes/genética , Humanos , Camundongos Transgênicos , Doenças do Sistema Nervoso/patologia , Placa Amiloide/patologia
11.
Mol Neurodegener ; 15(1): 4, 2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31924226

RESUMO

BACKGROUND: Multiomic studies by several groups in the NIH Accelerating Medicines Partnership for Alzheimer's Disease (AMP-AD) identified VGF as a major driver of Alzheimer's disease (AD), also finding that reduced VGF levels correlate with mean amyloid plaque density, Clinical Dementia Rating (CDR) and Braak scores. VGF-derived peptide TLQP-21 activates the complement C3a receptor-1 (C3aR1), predominantly expressed in the brain on microglia. However, it is unclear how mouse or human TLQP-21, which are not identical, modulate microglial function and/or AD progression. METHODS: We performed phagocytic/migration assays and RNA sequencing on BV2 microglial cells and primary microglia isolated from wild-type or C3aR1-null mice following treatment with TLQP-21 or C3a super agonist (C3aSA). Effects of intracerebroventricular TLQP-21 delivery were evaluated in 5xFAD mice, a mouse amyloidosis model of AD. Finally, the human HMC3 microglial cell line was treated with human TLQP-21 to determine whether specific peptide functions are conserved from mouse to human. RESULTS: We demonstrate that TLQP-21 increases motility and phagocytic capacity in murine BV2 microglial cells, and in primary wild-type but not in C3aR1-null murine microglia, which under basal conditions have impaired phagocytic function compared to wild-type. RNA sequencing of primary microglia revealed overlapping transcriptomic changes induced by treatment with TLQP-21 or C3a super agonist (C3aSA). There were no transcriptomic changes in C3aR1-null or wild-type microglia exposed to the mutant peptide TLQP-R21A, which does not activate C3aR1. Most of the C3aSA- and TLQP-21-induced differentially expressed genes were linked to cell migration and proliferation. Intracerebroventricular TLQP-21 administration for 28 days via implanted osmotic pump resulted in a reduction of amyloid plaques and associated dystrophic neurites and restored expression of subsets of Alzheimer-associated microglial genes. Finally, we found that human TLQP-21 activates human microglia in a fashion similar to activation of murine microglia by mouse TLQP-21. CONCLUSIONS: These data provide molecular and functional evidence suggesting that mouse and human TLQP-21 modulate microglial function, with potential implications for the progression of AD-related neuropathology.


Assuntos
Doença de Alzheimer/patologia , Microglia/metabolismo , Fragmentos de Peptídeos/metabolismo , Receptores de Complemento/metabolismo , Doença de Alzheimer/metabolismo , Animais , Linhagem Celular , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , Transdução de Sinais/fisiologia
12.
Acta Neuropathol Commun ; 7(1): 46, 2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30885273

RESUMO

Recent evidences suggest the involvement of DYRK1A (dual specificity tyrosine phosphorylation-regulated kinase 1 A) in Alzheimer's disease (AD). Here we showed that DYRK1A undergoes a proteolytic processing in AD patients hippocampus without consequences on its kinase activity. Resulting truncated forms accumulate in astrocytes and exhibit increased affinity towards STAT3ɑ, a regulator of inflammatory process. These findings were confirmed in APP/PS1 mice, an amyloid model of AD, suggesting that this DYRK1A cleavage is a consequence of the amyloid pathology. We identified in vitro the Leucettine L41 as a compound able to prevent DYRK1A proteolysis in both human and mouse protein extracts. We then showed that intraperitoneal injections of L41 in aged APP/PS1 mice inhibit STAT3ɑ phosphorylation and reduce pro-inflammatory cytokines levels (IL1- ß, TNF-ɑ and IL-12) associated to an increased microglial recruitment around amyloid plaques and decreased amyloid-ß plaque burden. Importantly, L41 treatment improved synaptic plasticity and rescued memory functions in APP/PS1 mice. Collectively, our results suggest that DYRK1A may contribute to AD pathology through its proteolytic process, reducing its kinase specificity. Further evaluation of inhibitors of DYRK1A truncation promises a new therapeutic approach for AD.


Assuntos
Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Fenótipo , Presenilina-1/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/genética , Proteólise , Doença de Alzheimer/enzimologia , Doença de Alzheimer/patologia , Animais , Hipocampo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Técnicas de Cultura de Órgãos , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/metabolismo , Quinases Dyrk
13.
Mol Psychiatry ; 24(9): 1383-1397, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30283031

RESUMO

TYROBP/DAP12 forms complexes with ectodomains of immune receptors (TREM2, SIRPß1, CR3) associated with Alzheimer's disease (AD) and is a network hub and driver in the complement subnetwork identified by multi-scale gene network studies of postmortem human AD brain. Using transgenic or viral approaches, we characterized in mice the effects of TYROBP deficiency on the phenotypic and pathological evolution of tauopathy. Biomarkers usually associated with worsening clinical phenotype (i.e., hyperphosphorylation and increased tauopathy spreading) were unexpectedly increased in MAPTP301S;Tyrobp-/- mice despite the improved learning behavior and synaptic function relative to controls with normal levels of TYROBP. Notably, levels of complement cascade initiator C1q were reduced in MAPTP301S;Tyrobp-/- mice, consistent with the prediction that C1q reduction exerts a neuroprotective effect. These observations suggest a model wherein TYROBP-KO-(knock-out)-associated reduction in C1q is associated with normalized learning behavior and electrophysiological properties in tauopathy model mice despite a paradoxical evolution of biomarker signatures usually associated with neurological decline.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Doença de Alzheimer/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Doença de Alzheimer/genética , Doença de Alzheimer/fisiopatologia , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Animais Geneticamente Modificados , Encéfalo/metabolismo , Complemento C1q/metabolismo , Complemento C1q/fisiologia , Modelos Animais de Doenças , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/fisiologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Microglia/metabolismo , Fenótipo , Fosforilação , Placa Amiloide/metabolismo , Tauopatias/genética , Proteínas tau/metabolismo
14.
Mol Psychiatry ; 24(3): 431-446, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30283032

RESUMO

Integrative gene network approaches enable new avenues of exploration that implicate causal genes in sporadic late-onset Alzheimer's disease (LOAD) pathogenesis, thereby offering novel insights for drug-discovery programs. We previously constructed a probabilistic causal network model of sporadic LOAD and identified TYROBP/DAP12, encoding a microglial transmembrane signaling polypeptide and direct adapter of TREM2, as the most robust key driver gene in the network. Here, we show that absence of TYROBP/DAP12 in a mouse model of AD-type cerebral Aß amyloidosis (APPKM670/671NL/PSEN1Δexon9) recapitulates the expected network characteristics by normalizing the transcriptome of APP/PSEN1 mice and repressing the induction of genes involved in the switch from homeostatic microglia to disease-associated microglia (DAM), including Trem2, complement (C1qa, C1qb, C1qc, and Itgax), Clec7a and Cst7. Importantly, we show that constitutive absence of TYROBP/DAP12 in the amyloidosis mouse model prevented appearance of the electrophysiological and learning behavior alterations associated with the phenotype of APPKM670/671NL/PSEN1Δexon9 mice. Our results suggest that TYROBP/DAP12 could represent a novel therapeutic target to slow, arrest, or prevent the development of sporadic LOAD. These data establish that the network pathology observed in postmortem human LOAD brain can be faithfully recapitulated in the brain of a genetically manipulated mouse. These data also validate our multiscale gene networks by demonstrating how the networks intersect with the standard neuropathological features of LOAD.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/deficiência , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Amiloidose/metabolismo , Proteínas de Membrana/deficiência , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/genética , Precursor de Proteína beta-Amiloide/genética , Amiloidose/genética , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Feminino , Redes Reguladoras de Genes , Humanos , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Patologia Molecular/métodos , Fenótipo , Placa Amiloide/patologia , Transcriptoma
15.
Mol Psychiatry ; 24(3): 472, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30464330

RESUMO

This article was originally published under standard licence, but has now been made available under a CC BY 4.0 license. The PDF and HTML versions of the paper have been modified accordingly.

17.
Neurobiol Aging ; 61: 23-35, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29032190

RESUMO

Amyloid precursor protein (APP), a key molecule of Alzheimer disease, is metabolized in 2 antagonist pathways generating the soluble APP alpha (sAPPα) having neuroprotective properties and the beta amyloid (Aß) peptide at the origin of neurotoxic oligomers, particularly Aß1-42. Whether extracellular Aß1-42 oligomers modulate the formation and secretion of sAPPα is not known. We report here that the addition of Aß1-42 oligomers to primary cortical neurons induced a transient increase in α-secretase activity and secreted sAPPα 6-9 hours later. Preventing the generation of sAPPα by using small interfering RNAs (siRNAs) for the α-secretases ADAM10 and ADAM17 or for APP led to increased Aß1-42 oligomer-induced cell death after 24 hours. Neuronal injuries due to oxidative stress or growth factor deprivation also generated sAPPα 7 hours later. Finally, acute injection of Aß1-42 oligomers into wild-type mouse hippocampi induced transient secretion of sAPPα 48-72 hours later. Altogether, these data suggest that neurons respond to stress by generating sAPPα for their survival. These data must be taken into account when interpreting sAPPα levels as a biomarker in neurological disorders.


Assuntos
Peptídeos beta-Amiloides/administração & dosagem , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Morte Celular , Neurônios/patologia , Neurônios/fisiologia , Fragmentos de Peptídeos/administração & dosagem , Fragmentos de Peptídeos/metabolismo , Proteína ADAM10 , Proteína ADAM17 , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/etiologia , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Biomarcadores/metabolismo , Células Cultivadas , Hipocampo , Masculino , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Estresse Oxidativo , RNA Interferente Pequeno , Fatores de Tempo
18.
Cereb Cortex ; 28(11): 3976-3993, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29048465

RESUMO

The treatment of Alzheimer's disease (AD) remains challenging and requires a better in depth understanding of AD progression. Particularly, the link between amyloid protein precursor (APP) processing and Tau pathology development remains poorly understood. Growing evidences suggest that APP processing and amyloid-ß (Aß) release are upstream of Tau pathology but the lack of animal models mimicking the slow progression of human AD raised questions around this mechanism. Here, we described that an AD-like ßAPP processing in adults wild-type rats, yielding to human APP, ßCTF and Aß levels similar to those observed in AD patients, is sufficient to trigger gradual Tauopathy. The Tau hyperphosphorylation begins several months before the formation of both amyloid plaques and tangle-like aggregates in aged rats and without associated inflammation. Based on a longitudinal characterization over 30 months, we showed that extrasynaptic and emotional impairments appear before long-term potentiation deficits and memory decline and so before Aß and Tau aggregations. These compelling data allowed us to (1) experimentally confirm the causal relationship between ßAPP processing and Tau pathology in vivo and without Tau transgene overexpression, (2) support the amyloidogenic cascade and (3) propose a 4-step hypothesis of prodromal AD progression.


Assuntos
Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Modelos Animais de Doenças , Hipocampo/metabolismo , Hipocampo/patologia , Proteínas tau/metabolismo , Idoso , Idoso de 80 Anos ou mais , Peptídeos beta-Amiloides/metabolismo , Animais , Progressão da Doença , Feminino , Vetores Genéticos , Humanos , Potenciação de Longa Duração , Masculino , Fragmentos de Peptídeos/metabolismo , Placa Amiloide/metabolismo , Presenilina-1/genética , Agregação Patológica de Proteínas/metabolismo , Ratos Wistar
19.
Acta Neuropathol ; 134(5): 769-788, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28612290

RESUMO

Conventional genetic approaches and computational strategies have converged on immune-inflammatory pathways as key events in the pathogenesis of late onset sporadic Alzheimer's disease (LOAD). Mutations and/or differential expression of microglial specific receptors such as TREM2, CD33, and CR3 have been associated with strong increased risk for developing Alzheimer's disease (AD). DAP12 (DNAX-activating protein 12)/TYROBP, a molecule localized to microglia, is a direct partner/adapter for TREM2, CD33, and CR3. We and others have previously shown that TYROBP expression is increased in AD patients and in mouse models. Moreover, missense mutations in the coding region of TYROBP have recently been identified in some AD patients. These lines of evidence, along with computational analysis of LOAD brain gene expression, point to DAP12/TYROBP as a potential hub or driver protein in the pathogenesis of AD. Using a comprehensive panel of biochemical, physiological, behavioral, and transcriptomic assays, we evaluated in a mouse model the role of TYROBP in early stage AD. We crossed an Alzheimer's model mutant APP KM670/671NL /PSEN1 Δexon9 (APP/PSEN1) mouse model with Tyrobp -/- mice to generate AD model mice deficient or null for TYROBP (APP/PSEN1; Tyrobp +/- or APP/PSEN1; Tyrobp -/-). While we observed relatively minor effects of TYROBP deficiency on steady-state levels of amyloid-ß peptides, there was an effect of Tyrobp deficiency on the morphology of amyloid deposits resembling that reported by others for Trem2 -/- mice. We identified modulatory effects of TYROBP deficiency on the level of phosphorylation of TAU that was accompanied by a reduction in the severity of neuritic dystrophy. TYROBP deficiency also altered the expression of several AD related genes, including Cd33. Electrophysiological abnormalities and learning behavior deficits associated with APP/PSEN1 transgenes were greatly attenuated on a Tyrobp-null background. Some modulatory effects of TYROBP on Alzheimer's-related genes were only apparent on a background of mice with cerebral amyloidosis due to overexpression of mutant APP/PSEN1. These results suggest that reduction of TYROBP gene expression and/or protein levels could represent an immune-inflammatory therapeutic opportunity for modulating early stage LOAD, potentially leading to slowing or arresting the progression to full-blown clinical and pathological LOAD.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Doença de Alzheimer/genética , Encéfalo/patologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Knockout , Microglia/metabolismo , Microglia/patologia , Mutação , Fosforilação , Proteínas tau/metabolismo
20.
Brain ; 140(3): 826-842, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28003243

RESUMO

Interleukin-2 (IL-2)-deficient mice have cytoarchitectural hippocampal modifications and impaired learning and memory ability reminiscent of Alzheimer's disease. IL-2 stimulates regulatory T cells whose role is to control inflammation. As neuroinflammation contributes to neurodegeneration, we investigated IL-2 in Alzheimer's disease. Therefore, we investigated IL-2 levels in hippocampal biopsies of patients with Alzheimer's disease relative to age-matched control individuals. We then treated APP/PS1ΔE9 mice having established Alzheimer's disease with IL-2 for 5 months using single administration of an AAV-IL-2 vector. We first found decreased IL-2 levels in hippocampal biopsies of patients with Alzheimer's disease. In mice, IL-2-induced systemic and brain regulatory T cells expansion and activation. In the hippocampus, IL-2 induced astrocytic activation and recruitment of astrocytes around amyloid plaques, decreased amyloid-ß42/40 ratio and amyloid plaque load, improved synaptic plasticity and significantly rescued spine density. Of note, this tissue remodelling was associated with recovery of memory deficits, as assessed in the Morris water maze task. Altogether, our data strongly suggest that IL-2 can alleviate Alzheimer's disease hallmarks in APP/PS1ΔE9 mice with established pathology. Therefore, this should prompt the investigation of low-dose IL-2 in Alzheimer's disease and other neuroinflammatory/neurodegenerative disorders.


Assuntos
Doença de Alzheimer/complicações , Doença de Alzheimer/patologia , Antipsicóticos/uso terapêutico , Interleucina-2/uso terapêutico , Transtornos da Memória/tratamento farmacológico , Plasticidade Neuronal/efeitos dos fármacos , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Animais , Antipsicóticos/farmacologia , Estudos de Casos e Controles , Espinhas Dendríticas/efeitos dos fármacos , Espinhas Dendríticas/genética , Espinhas Dendríticas/patologia , Modelos Animais de Doenças , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/genética , Feminino , Regulação da Expressão Gênica/genética , Humanos , Interleucina-2/sangue , Interleucina-2/farmacologia , Masculino , Transtornos da Memória/etiologia , Camundongos , Camundongos Transgênicos , Plasticidade Neuronal/genética , Placa Amiloide/patologia , Presenilina-1/genética , Sinapses/efeitos dos fármacos , Sinapses/patologia , Sinapses/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...