Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 9(9): e107316, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25229722

RESUMO

BACKGROUND: The rapid evolution of new sublineages of H5N1 influenza poses the greatest challenge in control of H5N1 infection by currently existing vaccines. To overcome this, an MVAtor vector expressing three H5HA antigens A/Vietnam/1203/04, A/Indonesia/669/06 and A/Anhui/01/05 (MVAtor-tri-HA vector) was developed to elicit broad cross-protection against diverse clades by covering amino acid variations in the major neutralizing epitopes of HA among H5N1 subtypes. METHODS: BALB/c mice and guinea pigs were immunized i.m. with 8×107 TCID50/animal of MVAtor-tri-HA vector. The immunogenicity and cross-protective immunity of the MVAtor-tri-HA vector was evaluated against diverse clades of H5N1 strains. RESULTS: The results showed that mice immunized with MVAtor-tri-HA vector induced robust cross-neutralizing immunity to diverse H5N1 clades. In addition, the MVAtor-tri-HA vector completely protected against 10 MLD50 of a divergent clade of H5N1 infection (clade 7). Importantly, the serological surveillance of post-vaccinated guinea pig sera demonstrated that MVAtor-tri-HA vector was able to elicit strong cross-clade neutralizing immunity against twenty different H5N1 strains from six clades that emerged between 1997 and 2012. CONCLUSIONS: The present findings revealed that incorporation of carefully selected HA genes from divergent H5N1 strains within a single vector could be an effective approach in developing a vaccine with broad coverage to prevent infection during a pandemic situation.


Assuntos
Virus da Influenza A Subtipo H5N1/imunologia , Vacinas contra Influenza/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Linhagem Celular , Proteção Cruzada , Reações Cruzadas/imunologia , Modelos Animais de Doenças , Feminino , Expressão Gênica , Ordem dos Genes , Vetores Genéticos/genética , Cobaias , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Humanos , Imunização , Virus da Influenza A Subtipo H5N1/genética , Camundongos , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/virologia , Vaccinia virus/genética
2.
J Physiol ; 589(Pt 21): 5109-23, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-21911609

RESUMO

Nicotinic acetylcholine receptors (nAChRs) are widely distributed throughout the mammalian central and peripheral nervous systems, where they contribute to neuronal excitability and synaptic communication. It has been reported that nAChRs are modulated by BK channels and that BK channels, in turn, are inhibited by acid-sensing ion channels (ASICs). Here we investigate the possible functional interaction between these channels in medial habenula (MHb) neurones. We report that selective antagonists of large-conductance calcium-activated potassium channels and ASIC1a channels, paxilline and psalmotoxin 1, respectively, did not induce detectable changes in nicotine-evoked currents. In contrast, the non-selective ASIC and Na(+)-H(+) exchanger (NHE1) antagonists, amiloride and its analogues, suppressed nicotine-evoked responses in MHb neurones of wild-type and ASIC2 null mice, excluding a possible involvement of ASIC2 in the nAChR inhibition by amiloride. Zoniporide, a more selective inhibitor of NHE1, reversibly inhibited α3ß4-, α7- and α4-containing (*) nAChRs in Xenopus oocytes and in brain slices, as well as in PS120 cells deficient in NHE1 and virally transduced with nAChRs, suggesting a generalized effect of zoniporide in most neuronal nAChR subtypes. Independently from nAChR antagonism, zoniporide profoundly blocked synaptic transmission onto MHb neurones without affecting glutamatergic and GABA receptors. Taken together, these results indicate that amiloride and zoniporide, which are clinically used to treat hypertension and cardiovascular disease, have an inhibitory effect on neuronal nAChRs when used experimentally at high doses. The possible cross-reactivity of these compounds with nAChRs in vivo will require further investigation.


Assuntos
Encéfalo/efeitos dos fármacos , Proteínas do Tecido Nervoso/antagonistas & inibidores , Receptores Nicotínicos/fisiologia , Bloqueadores dos Canais de Sódio/farmacologia , Trocadores de Sódio-Hidrogênio/antagonistas & inibidores , Canais Iônicos Sensíveis a Ácido , Amilorida/análogos & derivados , Amilorida/farmacologia , Animais , Encéfalo/fisiologia , Linhagem Celular , Guanidinas/farmacologia , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Oócitos/efeitos dos fármacos , Oócitos/fisiologia , Pirazóis/farmacologia , Canais de Sódio/deficiência , Canais de Sódio/genética , Canais de Sódio/fisiologia , Trocadores de Sódio-Hidrogênio/fisiologia , Transmissão Sináptica/efeitos dos fármacos , Xenopus
3.
Neuron ; 70(3): 522-35, 2011 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-21555077

RESUMO

Nicotine dependence is linked to single nucleotide polymorphisms in the CHRNB4-CHRNA3-CHRNA5 gene cluster encoding the α3ß4α5 nicotinic acetylcholine receptor (nAChR). Here we show that the ß4 subunit is rate limiting for receptor activity, and that current increase by ß4 is maximally competed by one of the most frequent variants associated with tobacco usage (D398N in α5). We identify a ß4-specific residue (S435), mapping to the intracellular vestibule of the α3ß4α5 receptor in close proximity to α5 D398N, that is essential for its ability to increase currents. Transgenic mice with targeted overexpression of Chrnb4 to endogenous sites display a strong aversion to nicotine that can be reversed by viral-mediated expression of the α5 D398N variant in the medial habenula (MHb). Thus, this study both provides insights into α3ß4α5 receptor-mediated mechanisms contributing to nicotine consumption, and identifies the MHb as a critical element in the circuitry controlling nicotine-dependent phenotypes.


Assuntos
Habenula/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/efeitos dos fármacos , Nicotina/farmacologia , Receptores Nicotínicos/metabolismo , Administração Oral , Análise de Variância , Animais , Animais Recém-Nascidos , Asparagina/genética , Ácido Aspártico/genética , Autorradiografia/métodos , Compostos Bicíclicos Heterocíclicos com Pontes/farmacocinética , Linhagem Celular Transformada , Condicionamento Operante/efeitos dos fármacos , Estimulação Elétrica , Proteínas de Fluorescência Verde/genética , Habenula/citologia , Humanos , Técnicas In Vitro , Isótopos de Iodo/farmacocinética , Camundongos , Camundongos Transgênicos , Modelos Moleculares , Mutação/genética , Proteínas do Tecido Nervoso/genética , Neurônios/fisiologia , Agonistas Nicotínicos/farmacocinética , Oócitos , Técnicas de Patch-Clamp/métodos , Polimorfismo de Nucleotídeo Único/genética , Piridinas/farmacocinética , Receptores Nicotínicos/genética , Técnicas Estereotáxicas , Xenopus
4.
Toxicon ; 56(8): 1293-8, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20932988

RESUMO

The quickest possible checkmate in the game of chess requires two moves using a pawn and the queen. Metaphorically speaking, the pawn (a membrane tether) and the queen (a toxin) work together to checkmate an ion channel within a neuronal circuit. This strategy termed "tethered toxin" (t-toxin) is based on the use of genetically encoded peptide toxins that are anchored to the cell-membrane via a glycolipid or transmembrane tether. Because of their mode of action at the cell surface, t-toxins act only on ion channels and receptors of the cell that is expressing the t-toxin, and not on identical receptors present in neighboring cells that do not express the t-toxin. In this mini-review we discuss the design of these genetic tools and their application for cell-specific and temporal manipulation of ion channel-mediated activities in vivo.


Assuntos
Canais Iônicos/antagonistas & inibidores , Moduladores de Transporte de Membrana/química , Toxinas Biológicas/química , Peçonhas/química , Animais , Membrana Celular/metabolismo , Humanos , Ativação do Canal Iônico/genética , Ativação do Canal Iônico/fisiologia , Transporte de Íons/genética , Transporte de Íons/fisiologia , Moduladores de Transporte de Membrana/metabolismo , Camundongos , Modelos Biológicos , Modelos Moleculares , Neurotransmissores/metabolismo , Organismos Geneticamente Modificados/metabolismo , Ratos , Especificidade por Substrato , Toxinas Biológicas/genética , Toxinas Biológicas/fisiologia , Peçonhas/genética , Peixe-Zebra/metabolismo
5.
J Physiol ; 588(Pt 10): 1695-707, 2010 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-20308253

RESUMO

Understanding information flow in sensory pathways requires cell-selective approaches to manipulate the activity of defined neurones. Primary afferent nociceptors, which detect painful stimuli, are enriched in specific voltage-gated sodium channel (VGSC) subtypes. Toxins derived from venomous animals can be used to dissect the contributions of particular ion currents to cell physiology. Here we have used a transgenic approach to target a membrane-tethered isoform of the conotoxin MrVIa (t-MrVIa) only to nociceptive neurones in mice. T-MrVIa transgenic mice show a 44 +/- 7% reduction of tetrodotoxin-resistant (TTX-R) VGSC current densities. This inhibition is permanent, reversible and does not result in functional upregulation of TTX-sensitive (TTX-S) VGSCs, voltage-gated calcium channels (VGCCs) or transient receptor potential (TRP) channels present in nociceptive neurones. As a consequence of the reduction of TTX-R VGSC currents, t-MrVIa transgenic mice display decreased inflammatory mechanical hypersensitivity, cold pain insensitivity and reduced firing of cutaneous C-fibres sensitive to noxious cold temperatures. These data validate the use of genetically encoded t-toxins as a powerful tool to manipulate VGSCs in specific cell types within the mammalian nervous system. This novel genetic methodology can be used for circuit mapping and has the key advantage that it enables the dissection of the contribution of specific ionic currents to neuronal function and to behaviour.


Assuntos
Conotoxinas/farmacologia , Nociceptores/efeitos dos fármacos , Bloqueadores dos Canais de Sódio/farmacologia , Canais de Sódio/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Southern Blotting , Cromossomos Artificiais Bacterianos/genética , Conotoxinas/química , DNA/biossíntese , DNA/genética , Eletrofisiologia , Feminino , Imuno-Histoquímica , Hibridização In Situ , Ativação do Canal Iônico/efeitos dos fármacos , Ativação do Canal Iônico/genética , Camundongos , Camundongos Transgênicos , Neurônios Aferentes/efeitos dos fármacos , Nociceptores/fisiologia , Oócitos/fisiologia , Dor/psicologia , Técnicas de Patch-Clamp , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Pele/inervação , Bloqueadores dos Canais de Sódio/química , Canais de Sódio/genética , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Xenopus laevis
6.
Nat Methods ; 7(3): 229-36, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20139968

RESUMO

At synaptic terminals, high voltage-activated Ca(v)2.1 and Ca(v)2.2 calcium channels have an essential and joint role in coupling the presynaptic action potential to neurotransmitter release. Here we show that membrane-tethered toxins allowed cell-autonomous blockade of each channel individually or simultaneously in mouse neurons in vivo. We report optimized constitutive, inducible and Cre recombinase-dependent lentiviral vectors encoding fluorescent recombinant toxins, and we also validated the toxin-based strategy in a transgenic mouse model. Toxins delivered by lentiviral vectors selectively inhibited the dopaminergic nigrostriatal pathway, and transgenic mice with targeted expression in nociceptive peripheral neurons displayed long-lasting suppression of chronic pain. Optimized tethered toxins are tools for cell-specific and temporal manipulation of ion channel-mediated activities in vivo, including blockade of neurotransmitter release.


Assuntos
Bloqueadores dos Canais de Cálcio/farmacologia , Transmissão Sináptica/efeitos dos fármacos , ômega-Conotoxinas/farmacologia , Animais , Canais de Cálcio Tipo N/efeitos dos fármacos , Células Cultivadas , Dopamina/metabolismo , Humanos , Integrases/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Dor/prevenção & controle , Ratos , Ratos Wistar , ômega-Conotoxinas/metabolismo
7.
Front Mol Neurosci ; 2: 21, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19915728

RESUMO

Neuronal circuits depend on the precise regulation of cell-surface receptors and ion channels. An ongoing challenge in neuroscience research is deciphering the functional contribution of specific receptors and ion channels using engineered modulators. A novel strategy, termed "tethered toxins", was recently developed to characterize neuronal circuits using the evolutionary derived selectivity of venom peptide toxins and endogenous peptide ligands, such as lynx1 prototoxins. Herein, the discovery and engineering of cell-surface tethered peptides is reviewed, with particular attention given to their cell-autonomy, modular composition, and genetic targeting in different model organisms. The relative ease with which tethered peptides can be engineered, coupled with the increasing number of neuroactive venom toxins and ligand peptides being discovered, imply a multitude of potentially innovative applications for manipulating neuronal circuits and tissue-specific cell networks, including treatment of disorders caused by malfunction of receptors and ion channels.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...