Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 13(26): 11488-11496, 2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34165111

RESUMO

In this study, a new type of compact magnetic memristor is demonstrated. It is based on the variation of the conductivity of a nano-sized magnetic tunnel junction as a function of the angle between the in-plane reference layer magnetization and a free layer exhibiting an isotropic in-plane coercivity. The free layer magnetization is rotated by two spin transfer torque contributions: one originating from the in-plane magnetized reference layer and the other one from an additional perpendicular polarizer integrated in the stack. Thanks to a proper tuning of the relative influence of these two torques, the magnetization of the free layer can be rotated step by step clockwise or anticlockwise in a range of angle between 0° (parallel configuration) and 180° (anti-parallel configuration) by sending pulses of current through the stack, of one or opposite polarity. The amplitude of the rotation steps and therefore of the conductance variations depends on the pulse amplitude and duration. In this way, we achieve monotonous variations of the resistance with the voltage polarity through the application of pulses in the ns range. We also retrieve the analytical expression of critical current density which is found to be in good agreement with the experimental results. The thermal stability of the intermediate resistance levels and the role of Joule heating are also discussed.

2.
Nanoscale ; 12(33): 17312-17318, 2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32789322

RESUMO

The fabrication of multi-gigabit magnetic random access memory (MRAM) chips requires the patterning of magnetic tunnel junctions at very small dimensions (sub-30 nm) and a very dense pitch. This remains a challenge due to the difficulty in etching magnetic tunnel junction stacks. We previously proposed a strategy to circumvent this problem by depositing the magnetic tunnel junction material on prepatterned metallic pillars, resulting in the junction being naturally shaped during deposition. Upon electrical contact, the deposit on top of the pillars constitutes the magnetic storage element of the memory cell. However, in this process, the magnetic material is also deposited in the trenches between the pillars that might affect the memory cell behaviour. Here we study the magnetic interactions between the deposit on top of the pillars and in the trenches by electron holography, at room temperature and up to 325 °C. Supported by models, we show that the additional material in the trenches is not perturbing the working principle of the memory chip and can even play the role of a flux absorber which reduces the crosstalk between neighboring dots. Besides, in the studied sample, the magnetization of the 1.4 nm thick storage layer of the dots is found to switch from out-of-plane to an in-plane configuration above 125 °C, but gradually decreases with temperature. Electron holography is shown to constitute a very efficient tool for characterizing the micromagnetic configuration of the storage layer in MRAM cells.

3.
Nanotechnology ; 31(42): 425302, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32531768

RESUMO

The all-optical magnetization reversal of magnetic layers, by picosecond optical pulses, is of particular interest as it shows the potential for energy-efficient and fast magnetic tunnel junction (MTJ) elements. This approach requires memory elements that are optically and electronically accessible, for optical writing and electronic read-out. In this paper, we propose the integration of indium tin oxide (ITO) as a transparent conducting electrode for magnetic tunnel junctions in integrated spintronic-photonic circuits. To provide light with sufficient energy to the MTJ free layer and allow electrical read-out of the MTJ state, we successfully integrated indium tin oxide as a top transparent electrode. The study shows that ITO film deposition by physical vapor deposition with conditions such as high source power and low O2 flow achieves smooth and conductive thin films. Increase in grain size was associated with low resistivity. Deposition of 150 nm ITO at 300 W, O2 flow of 1 sccm and 8.10-3 mbar vacuum pressure results in 4.8 × 10-4 Ω.cm resistivity and up to 80% transmittance at 800 nm wavelength. The patterning of ITO using CH4/H2 chemistry in a reactive ion etch process was investigated showing almost vertical sidewalls for diameters down to 50 nm. The ITO based process flow was compared to a standard magnetic tunnel junctions fabrication process flow based on Ta hard mask. Electrical measurements validate that the proposed process based on ITO results in properties equivalent to the standard process. We also show electrical results of magnetic tunnel junctions having all-optical switching top electrode fabricated with ITO for optical access. The developed ITO process flow shows very promising initial results and provides a way to fabricate these new devices to integrate all-optical switching magnetic tunnel junctions with electronic and photonic elements.

4.
Sci Rep ; 10(1): 5211, 2020 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-32251329

RESUMO

Ever since the first observation of all-optical switching of magnetization in the ferrimagnetic alloy GdFeCo using femtosecond laser pulses, there has been significant interest in exploiting this process for data-recording applications. In particular, the ultrafast speed of the magnetic reversal can enable the writing speeds associated with magnetic memory devices to be potentially pushed towards THz frequencies. This work reports the development of perpendicular magnetic tunnel junctions incorporating a stack of Tb/Co nanolayers whose magnetization can be all-optically controlled via helicity-independent single-shot switching. Toggling of the magnetization of the Tb/Co electrode was achieved using either 60 femtosecond-long or 5 picosecond-long laser pulses, with incident fluences down to 3.5 mJ/cm2, for Co-rich compositions of the stack either in isolation or coupled to a CoFeB-electrode/MgO-barrier tunnel-junction stack. Successful switching of the CoFeB-[Tb/Co] electrodes was obtained even after annealing at 250 °C. After integration of the [Tb/Co]-based electrodes within perpendicular magnetic tunnel junctions yielded a maximum tunneling magnetoresistance signal of 41% and RxA value of 150 Ωµm2 with current-in-plane measurements and ratios between 28% and 38% in nanopatterned pillars. These results represent a breakthrough for the development of perpendicular magnetic tunnel junctions controllable using single laser pulses, and offer a technologically-viable path towards the realization of hybrid spintronic-photonic systems featuring THz switching speeds.

5.
Nanoscale ; 12(11): 6378-6384, 2020 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-32134422

RESUMO

The concept of Perpendicular Shape Anisotropy STT-MRAM (PSA-STT-MRAM) has been recently proposed as a solution to enable the downsize scalability of STT-MRAM devices beyond the sub-20 nm technology node. For conventional p-STT-MRAM devices with sub-20 nm diameters, the perpendicular anisotropy arising from the MgO/CoFeB interface becomes too weak to ensure thermal stability of the storage layer. In addition, this interfacial anisotropy rapidly decreases with increasing temperature which constitutes a drawback in applications with a large range of operating temperatures. Here, we show that by using a PSA based storage layer, the source of anisotropy is much more robust against thermal fluctuations than the interfacial anisotropy, which allows considerable reduction of the temperature dependence of the coercivity. From a practical point of view, this is very interesting for applications having to operate on a wide range of temperatures (e.g. automotive -40 °C/+150 °C).

6.
Nanoscale ; 11(22): 10667-10683, 2019 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-31094399

RESUMO

Biocompatible suspended magneto-elastic membranes were prepared. They consist of PDMS (polydimethylsiloxane) films, with embedded arrays of micrometric magnetic pillars made with lithography techniques. For visible light wavelengths, our membranes constitute magnetically tunable optical diffraction gratings, in transmission and reflection. The optical response has been quantitatively correlated with membrane structure and deformation, through optical and magneto-mechanical models. In contrast to the case of planar membranes, the diffraction patterns measured in reflection and transmission vary very differently upon magnetic field application. Indeed, the reflected beam is largely affected by the membrane bending, whereas the transmitted beam remains almost unchanged. In reflection, even weak membrane deformation can produce significant changes of the diffraction patterns. This field-controlled optical response may be used in adaptive optical applications, photonic devices, and for biological applications.


Assuntos
Materiais Biocompatíveis/química , Dimetilpolisiloxanos/química , Luz , Campos Magnéticos , Membranas Artificiais , Modelos Químicos
7.
Nanoscale ; 10(25): 12187-12195, 2018 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-29923577

RESUMO

A new approach to increase the downsize scalability of perpendicular STT-MRAM is presented. It consists of significantly increasing the thickness of the storage layer in out-of-plane magnetized tunnel junctions (pMTJ) as compared to conventional pMTJ in order to induce a perpendicular shape anisotropy (PSA) in this layer. This PSA is obtained by depositing a thick ferromagnetic (FM) layer on top of an MgO/FeCoB based magnetic tunnel junction (MTJ) so that the thickness of the storage layer is of the order of or larger than the diameter of the MTJ pillar. In contrast to conventional spin transfer torque magnetic random access memory (STT-MRAM) wherein the demagnetizing energy opposes the interfacial perpendicular magnetic anisotropy (iPMA), in these novel memory cells, both PSA and iPMA contributions favor the out-of-plane orientation of the storage layer magnetization. Using thicker storage layers in these PSA-STT-MRAMs has several advantages. Due to the PSA, very high and easily tunable thermal stability factors can be achieved, even down to sub-10 nm diameters. Moreover, a low damping material can be used for the thick FM material thus leading to a reduction of the write current. The paper describes this new PSA-STT-MRAM concept, practical realization of such memory arrays, magnetic characterization demonstrating thermal stability factor above 200 for MTJs as small as 8 nm in diameter and possibility to maintain the thermal stability factor above 60 down to 4 nm diameter.

8.
Nano Lett ; 17(12): 7234-7241, 2017 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-29148808

RESUMO

The miniaturization of complementary metal-oxide-semiconductor (CMOS) devices becomes increasingly difficult due to fundamental limitations and the increase of leakage currents. Large research efforts are devoted to find alternative concepts that allow for a larger data-density and lower power consumption than conventional semiconductor approaches. Spin waves have been identified as a potential technology that can complement and outperform CMOS in complex logic applications, profiting from the fact that these waves enable wave computing on the nanoscale. The practical application of spin waves, however, requires the demonstration of scalable, CMOS compatible spin-wave detection schemes in material systems compatible with standard spintronics as well as semiconductor circuitry. Here, we report on the wave-vector independent detection of short-waved spin waves with wavelengths down to 150 nm by the inverse spin Hall effect in spin-wave waveguides made from ultrathin Ta/Co8Fe72B20/MgO. These findings open up the path for miniaturized scalable interconnects between spin waves and CMOS and the use of ultrathin films made from standard spintronic materials in magnonics.

9.
Phys Rev Lett ; 116(7): 077203, 2016 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-26943556

RESUMO

We report the measurement of a spin pumping effect due to fluctuations of the magnetic order of IrMn thin films. A precessing NiFe ferromagnet injected spins into IrMn spin sinks, and enhanced damping was observed around the IrMn magnetic phase transition. Our data were compared to a recently developed theory and converted into interfacial spin mixing conductance enhancements. By spotting the spin pumping peak, the thickness dependence of the IrMn critical temperature could be determined and the characteristic length for the spin-spin interactions was deduced.

10.
Phys Rev Lett ; 113(4): 047203, 2014 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-25105650

RESUMO

The nucleation of reversed magnetic domains in Pt/Co/AlO(x) microstructures with perpendicular anisotropy was studied experimentally in the presence of an in-plane magnetic field. For large enough in-plane field, nucleation was observed preferentially at an edge of the sample normal to this field. The position at which nucleation takes place was observed to depend in a chiral way on the initial magnetization and applied field directions. A quantitative explanation of these results is proposed, based on the existence of a sizable Dzyaloshinskii-Moriya interaction in this sample. Another consequence of this interaction is that the energy of domain walls can become negative for in-plane fields smaller than the effective anisotropy field.

11.
Nat Commun ; 4: 2025, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23887502

RESUMO

The internal phase profile of electromagnetic radiation determines many functional properties of metal, oxide or semiconductor heterostructures. In magnetic heterostructures, emerging spin electronic phenomena depend strongly upon the phase profile of the magnetic field H at gigahertz frequencies. Here we demonstrate nanometre-scale, layer-resolved detection of electromagnetic phase through the radio frequency magnetic field H(rf) in magnetic heterostructures. Time-resolved X-ray magnetic circular dichroism reveals the local phase of the radio frequency magnetic field acting on individual magnetizations M(i) through the susceptibility as M = χH(rf). An unexpectedly large phase variation, ~40°, is detected across spin-valve trilayers driven at 3 GHz. The results have implications for the identification of novel effects in spintronics and suggest general possibilities for electromagnetic-phase profile measurement in heterostructures.

12.
Phys Rev Lett ; 108(24): 247202, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23004314

RESUMO

Domain wall motion induced by nanosecond current pulses in nanostripes with perpendicular magnetic anisotropy (Pt/Co/AlO(x)) is shown to exhibit negligible inertia. Time-resolved magnetic microscopy during current pulses reveals that the domain walls start moving, with a constant speed, as soon as the current reaches a constant amplitude, and no or little motion takes place after the end of the pulse. The very low "mass" of these domain walls is attributed to the combination of their narrow width and high damping parameter α. Such a small inertia should allow accurate control of domain wall motion by tuning the duration and amplitude of the current pulses.

13.
Phys Rev Lett ; 109(12): 127202, 2012 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-23005979

RESUMO

We report a novel depth dependence for the penetration of spin current into ultrathin ferromagnets. Ferromagnetic resonance measurements show that transverse spin current pumped into three structurally distinct ferromagnets is attenuated, on reflection, by an amount proportional to the ferromagnetic layer thickness, saturating abruptly at 1.2 ± 0.1 nm. The observed power-law decay, differing significantly from the (exponential) characteristic-length dependence for longitudinal spin current, confirms models of spin momentum transfer which have been inaccessible to experiment.

14.
Phys Rev Lett ; 102(13): 137202, 2009 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-19392398

RESUMO

We report the direct measurement of the nonadiabatic component of the spin torque in domain walls. Our method is independent of both the pinning of the domain wall in the wire as well as of the Gilbert damping parameter. We demonstrate that the ratio between the nonadiabatic and the adiabatic components can be as high as 1, and explain this high value by the importance of the spin-flip rate to the nonadiabatic torque. In addition to their fundamental significance these results open the way for applications by demonstrating a significant increase of the spin torque efficiency.

20.
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...