Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 13(3)2020 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-31991742

RESUMO

In this study, silylated Laponites® (LAP) were synthetized with various loads of 3-aminopropyltriethoxysilane (APTES) to evaluate their adsorption properties of 133Cs, 59Co, and 88Sr during single-solute and competitive experiments. The increase in the initial load of APTES increased the adsorbed amount of APTES in the resulted grafted clay. The characterization of LAP-APTES exhibited a covalent binding between APTES and LAP and emphasized the adsorption sites of APTES for each tested load. In comparison with raw LAP, LAP-APTES displayed significantly higher adsorption properties of Co2+, Cs+, and Sr2+. The competitive adsorption of these three contaminants provides a deeper understanding of the affinity between adsorbate and adsorbent. Therefore, Co2+ displayed a strong and specific adsorption onto LAP-APTES. Except for Cs+, the adsorption capacity was improved with increasing the load of APTES. Finally, the desorption behavior of the three contaminants was tested in saline solutions. Cs+ and Sr2+ were significantly released especially by inorganic cations displaying the same valence. Conversely, desorption of Co2+ was very low whatever the saline solution. LAP-APTES, therefore, presented suitable adsorption properties for the removal of radionuclides especially for Co2+, making this material suitable to improve the decontamination of radioactive wastewaters.

2.
RSC Adv ; 8(51): 29248-29273, 2018 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-35547978

RESUMO

The number of studies on the capture of radioactive iodine compounds by porous sorbents has regained major importance in the last few years. In fact, nuclear energy is facing major issues related to operational safety and the treatment and safe disposal of generated radioactive waste. In particular during nuclear accidents, such as that in 2011 at Fukushima, gaseous radionuclides have been released in the off-gas stream. Among these, radionuclides that are highly volatile and harmful to health such as long-lived 129I, short-lived 131I and organic compounds such as methyl iodide (CH3I) have been released. Immediate and effective means of capturing and storing these radionuclides are needed. In the present review, we focus on porous sorbents for the capture and storage of radioactive iodine compounds. Concerns with, and limitations of, the existing sorbents with respect to operating conditions and their capacities for iodine capture are discussed and compared.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...