Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Health Prev Med ; 26(1): 92, 2021 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-34536991

RESUMO

BACKGROUND: Particulate matter (PM) is recognized as the most harmful air pollutant to the human health. The Yangon city indeed suffers much from PM-related air pollution. Recent research has interestingly been focused on the novel subject of changes in the air quality associated with the restrictive measures in place during the current coronavirus disease-2019 (COVID-19) pandemic. The first case of COVID-19 in Myanmar was diagnosed on March 23, 2020. In this article, we report on our attempt to evaluate any effects of the COVID-19-restrictive measures on the ambient PM pollution in Yangon. METHODS: We measured the PM concentrations every second for 1 week on four occasions at three study sites with different characteristics; the first occasion was before the start of the COVID-19 pandemic and the remaining three occasions were while the COVID-19-restrictive measures were in place, including Stay-At-Home and Work-From-Home orders. The Pocket PM2.5 Sensor [PRO] designed by the National Institute for Environmental Studies (NIES), Japan, in cooperation with Yaguchi Electric Co., Ltd., (Miyagi, Japan) was used for the measurement of the ambient PM2.5 and PM10 concentrations. RESULTS: The results showed that there was a significant reduction (P < 0.001) in both the PM2.5 and PM10 concentrations while the COVID-19-restrictive measures were in place as compared to the measured values prior to the pandemic. The city experienced a profound improvement in the PM-related air quality from the "unhealthy" category prior to the onset of the COVID-19 pandemic to the "good" category during the pandemic, when the restrictive measures were in place. The percent changes in the PM concentrations varied among the three study sites, with the highest percent reduction noted in a semi-commercial crowded area (84.8% for PM2.5; 88.6% for PM10) and the lowest percent reduction noted in a residential quiet area (15.6% for PM2.5; 12.0% for PM10); the percent reductions also varied among the different occasions during the COVID-19 pandemic that the measurements were made. CONCLUSIONS: We concluded that the restrictive measures which were in effect to combat the COVID-19 pandemic had a positive impact on the ambient PM concentrations. The changes in the PM concentrations are considered to be largely attributable to reduction in anthropogenic emissions as a result of the restrictive measures, although seasonal influences could also have contributed in part. Thus, frequent, once- or twice-weekly Stay-At-Home or Telework campaigns, may be feasible measures to reduce PM-related air pollution. When devising such an action plan, it would be essential to raise the awareness of public about the health risks associated with air pollution and create a social environment in which Telework can be carried out, in order to ensure active compliance by the citizens.


Assuntos
Poluição do Ar/análise , COVID-19/epidemiologia , Material Particulado/análise , Humanos , Mianmar/epidemiologia , Pandemias , SARS-CoV-2
2.
Artigo em Inglês | MEDLINE | ID: mdl-33467564

RESUMO

The formaldehyde (FA) embalming method, the world's most common protocol for the fixation of cadavers, has been consistently used in medical universities in Myanmar. This study was designed to examine the indoor FA concentrations in anatomy dissection rooms, an exposed site, and lecture theater, an unexposed control site, and to access personal exposure levels of FA and clinical symptoms of medical students and instructors. In total, 208 second year medical students (1/2019 batch) and 18 instructors from Department of Anatomy, University of Medicine 1, participated. Thirteen dissection sessions were investigated from February 2019 to January 2020. Diffusive sampling devices were used as air samplers and high-performance liquid chromatography was used for measurement of FA. Average indoor FA concentration of four dissection rooms was 0.43 (0.09-1.22) ppm and all dissection rooms showed indoor concentrations above the occupational exposure limits and short-term exposure limit for general population. Personal FA exposure values were higher than indoor FA concentrations and the instructors (0.68, 0.04-2.11 ppm) had higher exposure than the students (0.44, 0.06-1.72 ppm). Unpleasant odor, eye and nose irritations and inability to concentrate were frequently reported FA-related symptoms, and the students were found to have significantly higher risks (p < 0.05) of having these symptoms during the dissection sessions than during lecture.


Assuntos
Poluição do Ar em Ambientes Fechados , Exposição Ocupacional , Poluição do Ar em Ambientes Fechados/análise , Dissecação , Formaldeído/efeitos adversos , Formaldeído/análise , Humanos , Laboratórios , Mianmar , Hipersensibilidade Respiratória
3.
J UOEH ; 42(4): 307-315, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33268607

RESUMO

Assessment of personal exposure to particulate matter with an aerodynamic diameter less than or 2.5 µm (PM2.5) is necessary to study the association between PM exposure and health risk. Development of a personal PM2.5 sensor or device is required for the evaluation of individual exposure level. In this study, we aimed to develop a small-sized, lightweight sensor with a global positioning system (GPS) attached that can measure PM2.5 and PM10 every second to assess continuous personal exposure levels. The participants in this study were apparently healthy housewives (n = 15) and university female teaching staff (n = 15) who live in a high PM2.5 area, Yangon, Myanmar. The average PM2.5 exposure levels during 24 h were 16.1 ± 10.0 µg/m3 in the housewives and 15.8 ± 4.0 µg/m3 in the university female teaching staff. The university female teaching staff showed high exposure concentrations during commuting hours, and had stable, relatively low concentrations at work, whereas the housewives showed short-term high exposure peaks due to differences in their lifestyles. This is the first study to show that a GPS-attached standalone PM2.5 and PM10 Sensor [PRO] can be successfully used for mobile sensing, easy use, continuous measurement, and rapid data analysis.


Assuntos
Exposição Ambiental/análise , Monitoramento Ambiental/instrumentação , Sistemas de Informação Geográfica/instrumentação , Material Particulado/análise , Adulto , Feminino , Humanos , Mianmar , Tamanho da Partícula , Adulto Jovem
4.
Environ Health Prev Med ; 23(1): 53, 2018 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-30360764

RESUMO

BACKGROUND: Airborne particulate pollution is more critical in the developing world than in the developed countries in which industrialization and urbanization are rapidly increased. Yangon, a second capital of Myanmar, is a highly congested and densely populated city. Yet, there is limited study which assesses particulate matter (PM2.5) in Yangon currently. Few previous local studies were performed to assess particulate air pollution but most results were concerned PM10 alone using fixed monitoring. Therefore, the present study aimed to assess distribution of PM2.5 in different townships of Yangon, Myanmar. This is the first study to quantify the regional distribution of PM2.5 in Yangon City. METHODS: The concentration of PM2.5 was measured using Pocket PM2.5 Sensor (Yaguchi Electric Co., Ltd., Miyagi, Japan) three times (7:00 h, 13:00 h, 19:00 h) for 15 min per day for 5 days from January 25th to 29th in seven townships. Detailed information of eight tracks for PM2.5 pollution status in different areas with different conditions within Kamayut Township were also collected. RESULTS: The results showed that in all townships, the highest PM2.5 concentrations in the morning followed by the evening and the lowest concentrations in the afternoon were observed. Among the seven townships, Hlaingtharyar Township had the highest concentrations (164 ± 52 µg/m3) in the morning and (100 ± 35 µg/m3) in the evening. Data from eight tracks in Kamayut Township also indicated that PM2.5 concentrations varied between different areas and conditions of the same township at the same time. CONCLUSION: Myanmar is one of the few countries that still have to establish national air quality standards. The results obtained from this study are useful for the better understanding of the nature of air pollution linked to PM2.5. Moreover, the sensor which was used in this study can provide real-time exposure, and this could give more accurate exposure data of the population especially those subpopulations that are highly exposed than fixed station monitoring.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Material Particulado/análise , Cidades , Mianmar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...