Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 912: 169408, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38114034

RESUMO

Protection and restoration of the CaCO3 depositing alkaline fens require an in-depth understanding of these unique and declining ecosystems. The present study investigates the development of the formerly heavy tufa depositing alkaline fen in East-Central Europe after CaCO3 precipitation markedly declined ca. 5400 cal yr BP. By combining palaeoecological and monitoring data, we aim to identify the limiting factors for tufa deposition and to recognise the vegetation and mollusc response to the change. Investigation of the current fen ecosystem included a botanical and malacological inventory and a monthly monitoring of the physicochemical properties of the groundwater emerging at the fen. It was also tested whether CaCO3 precipitates there. Transformations of the fen ecosystem since the mid-Holocene tufa decline were recognized by applying plant macrofossil and malacological analyses supplemented with organic matter and CaCO3 contents and the radiocarbon chronologies of the sediment cores. Although macroscopic tufa is currently not observed at the fen surface, the monitoring study revealed the microscopic calcite crystals at the glass slides during the spring and summer. A combination of cooling, gradual depletion of the Ca2+ pool, acidification of soils, and water table fluctuations was likely responsible for limiting tufa deposition in the mid-Holocene and maintaining this state during the late Holocene. Share of the calciphilous species' macrofossils (e.g. moss Tomentypnum nitens) declined following the sedimentary CaCO3 drop, whereas the contribution of species associated with high nutrient levels raised (e.g. Juncus articulatus). Inspection of the contemporary vegetation of the fen revealed that only Carex paniculata is associated with the calcium-rich substrate. The response of molluscs to the decline in tufa deposition remains unclear as mollusc shells did not preserve in CaCO3-depleted sediments, except for the youngest deposits. The present-day malacofauna consists of 21 species, including two rare and protected calciphilous species, namely Vertigo angustior and V. geyeri.


Assuntos
Briófitas , Ecossistema , Plantas , Europa (Continente) , Estações do Ano
2.
Glob Chang Biol ; 29(23): 6756-6771, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37818677

RESUMO

Understanding large-scale drivers of biodiversity in palustrine wetlands is challenging due to the combined effects of macroclimate and local edaphic conditions. In boreal and temperate fen ecosystems, the influence of macroclimate on biodiversity is modulated by hydrological settings across habitats, making it difficult to assess their vulnerability to climate change. Here, we investigate the influence of macroclimate and edaphic factors on three Essential Biodiversity Variables across eight ecologically defined habitats that align with ecosystem classifications and red lists. We used 27,555 vegetation plot samples from European fens to assess the influence of macroclimate and groundwater pH predictors on the geographic distribution of each habitat type. Additionally, we modeled the relative influence of macroclimate, water pH, and water table depth on community species richness and composition, focusing on 309 plant specialists. Our models reveal strong effects of mean annual temperature, diurnal thermal range, and summer temperature on biodiversity variables, with contrasting differences among habitats. While macroclimatic factors primarily shape geographic distributions and species richness, edaphic factors emerge as the primary drivers of composition for vascular plants and bryophytes. Annual precipitation exhibits non-linear effects on fen biodiversity, with varying impact across habitats with different hydrological characteristics, suggesting a minimum requirement of 600 mm of annual precipitation for the occurrence of fen ecosystems. Our results anticipate potential impacts of climate warming on European fens, with predictable changes among habitat types and geographic regions. Moreover, we provide evidence that the drivers of biodiversity in boreal and temperate fens are closely tied to the ecological characteristics of each habitat type and the dispersal abilities of bryophytes and vascular plants. Given that the influence of macroclimate and edaphic factors on fen ecosystems is habitat specific, climate change research and conservation actions should consider ecological differentiation within functional IUCN ecosystems at continental and regional scales.


Assuntos
Briófitas , Traqueófitas , Ecossistema , Biodiversidade , Áreas Alagadas , Plantas
3.
Glob Chang Biol ; 28(3): 1023-1037, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34748262

RESUMO

Rising temperatures may endanger fragile ecosystems because their character and key species show different habitat affinities under different climates. This assumption has only been tested in limited geographical scales. In fens, one of the most endangered ecosystems in Europe, broader pH niches have been reported from cold areas and are expected for colder past periods. We used the largest European-scale vegetation database from fens to test the hypothesis that pH interacts with macroclimate temperature in forming realized niches of fen moss and vascular plant species. We calibrated the data set (29,885 plots after heterogeneity-constrained resampling) with temperature, using two macroclimate variables, and with the adjusted pH, a variable combining pH and calcium richness. We modelled temperature, pH and water level niches for one hundred species best characterizing European fens using generalized additive models and tested the interaction between pH and temperature. Fifty-five fen species showed a statistically significant interaction between pH and temperature (adj p Ë‚ .01). Forty-six of them (84%) showed a positive interaction manifested by a shift or restriction of their niche to higher pH in warmer locations. Nine vascular plants and no moss showed the opposite interaction. Mosses showed significantly greater interaction. We conclude that climate significantly modulates edaphic niches of fen plants, especially bryophytes. This result explains previously reported regional changes in realized pH niches, a current habitat-dependent decline of endangered taxa, and distribution changes in the past. A warmer climate makes growing seasons longer and warmer, increases productivity, and may lower the water level. These effects prolong the duration and intensity of interspecific competition, support highly competitive Sphagnum mosses, and, as such, force niches of specialized fen species towards narrower high-pH ranges. Recent anthropogenic landscape changes pose a severe threat to many fen species and call for mitigation measures to lower competition pressure in their refugia.


Assuntos
Briófitas , Sphagnopsida , Mudança Climática , Ecossistema , Concentração de Íons de Hidrogênio , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...