Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Bacteriol ; 199(1)2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27795320

RESUMO

Most bacteria are likely to face osmotic challenges, but there is yet much to learn about how such environmental changes affect the architecture of bacterial cells. Here, we report a cell-biological study in model organisms of the genus Streptomyces, which are actinobacteria that grow in a highly polarized fashion to form branching hyphae. The characteristic apical growth of Streptomyces hyphae is orchestrated by protein assemblies, called polarisomes, which contain coiled-coil proteins DivIVA and Scy, and recruit cell wall synthesis complexes and the stress-bearing cytoskeleton of FilP to the tip regions of the hyphae. We monitored cell growth and cell-architectural changes by time-lapse microscopy in osmotic upshift experiments. Hyperosmotic shock caused arrest of growth, loss of turgor, and hypercondensation of chromosomes. The recovery period was protracted, presumably due to the dehydrated state of the cytoplasm, before hyphae could restore their turgor and start to grow again. In most hyphae, this regrowth did not take place at the original hyphal tips. Instead, cell polarity was reprogrammed, and polarisomes were redistributed to new sites, leading to the emergence of multiple lateral branches from which growth occurred. Factors known to regulate the branching pattern of Streptomyces hyphae, such as the serine/threonine kinase AfsK and Scy, were not involved in reprogramming of cell polarity, indicating that different mechanisms may act under different environmental conditions to control hyphal branching. Our observations of hyphal morphology during the stress response indicate that turgor and sufficient hydration of cytoplasm are required for Streptomyces tip growth. IMPORTANCE: Polar growth is an intricate manner of growth for accomplishing a complicated morphology, employed by a wide range of organisms across the kingdoms of life. The tip extension of Streptomyces hyphae is one of the most pronounced examples of polar growth among bacteria. The expansion of the cell wall by tip extension is thought to be facilitated by the turgor pressure, but it was unknown how external osmotic change influences Streptomyces tip growth. We report here that severe hyperosmotic stress causes cessation of growth, followed by reprogramming of cell polarity and rearrangement of growth zones to promote lateral hyphal branching. This phenomenon may represent a strategy of hyphal organisms to avoid osmotic stress encountered by the growing hyphal tip.


Assuntos
Pressão Osmótica/fisiologia , Streptomyces/citologia , Streptomyces/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Parede Celular , Citoesqueleto , DNA Bacteriano , Regulação Bacteriana da Expressão Gênica/fisiologia , Mutação , Estresse Fisiológico , Água
2.
BMC Microbiol ; 13: 281, 2013 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-24308424

RESUMO

BACKGROUND: The sporulation of aerial hyphae of Streptomyces coelicolor is a complex developmental process. Only a limited number of the genes involved in this intriguing morphological differentiation programme are known, including some key regulatory genes. The aim of this study was to expand our knowledge of the gene repertoire involved in S. coelicolor sporulation. RESULTS: We report a DNA microarray-based investigation of developmentally controlled gene expression in S. coelicolor. By comparing global transcription patterns of the wild-type parent and two mutants lacking key regulators of aerial hyphal sporulation, we found a total of 114 genes that had significantly different expression in at least one of the two mutants compared to the wild-type during sporulation. A whiA mutant showed the largest effects on gene expression, while only a few genes were specifically affected by whiH mutation. Seven new sporulation loci were investigated in more detail with respect to expression patterns and mutant phenotypes. These included SCO7449-7451 that affect spore pigment biogenesis; SCO1773-1774 that encode an L-alanine dehydrogenase and a regulator-like protein and are required for maturation of spores; SCO3857 that encodes a protein highly similar to a nosiheptide resistance regulator and affects spore maturation; and four additional loci (SCO4421, SCO4157, SCO0934, SCO1195) that show developmental regulation but no overt mutant phenotype. Furthermore, we describe a new promoter-probe vector that takes advantage of the red fluorescent protein mCherry as a reporter of cell type-specific promoter activity. CONCLUSION: Aerial hyphal sporulation in S. coelicolor is a technically challenging process for global transcriptomic investigations since it occurs only as a small fraction of the colony biomass and is not highly synchronized. Here we show that by comparing a wild-type to mutants lacking regulators that are specifically affecting processes in aerial hypha, it is possible to identify previously unknown genes with important roles in sporulation. The transcriptomic data reported here should also serve as a basis for identification of further developmentally important genes in future functional studies.


Assuntos
Regulação Bacteriana da Expressão Gênica , Esporos Bacterianos/crescimento & desenvolvimento , Esporos Bacterianos/genética , Streptomyces coelicolor/crescimento & desenvolvimento , Streptomyces coelicolor/genética , Perfilação da Expressão Gênica , Análise em Microsséries
3.
Bioarchitecture ; 3(4): 110-2, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24002529

RESUMO

Streptomyces is a multicellular mycelial bacterium, which exhibits pronounced cell polarity and grows by extension of the hyphal tips. Similarly to other polarly growing walled cells, such as filamentous fungi or pollen tubes, Streptomyces hyphae face an intrinsic problem: addition of new cell wall material causes structural weakness of the elongating tip. Cellular strategies employed by walled cells to cope with this problem are not well understood. We have identified a coiled coil protein FilP, with properties similar to those of animal intermediate filament (IF) proteins, which somehow confers rigidity and elasticity to the Streptomyces hyphae. In a recent publication we showed that FilP forms extensive cis-interconnected networks, which likely explain its biological function in determining the mechanical properties of the cells. Surprisingly, the intrinsically non-dynamic cytoskeletal network of FilP exhibits a dynamic behavior in vivo and assembles into growth-dependent polar gradients. We show that apical accumulation of FilP is dependent on its interaction with the main component of the Streptomyces polarisome, DivIVA. Thus, the same polarisome complex that orchestrates cell elongation, also recruits an additional stress-bearing structure to the growing tips with an intrinsically weak cell wall. Similar strategy might be used by all polarly growing walled cells.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas do Citoesqueleto/metabolismo , Citoesqueleto/metabolismo , Multimerização Proteica/fisiologia , Streptomyces coelicolor/metabolismo
4.
Proc Natl Acad Sci U S A ; 110(21): E1889-97, 2013 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-23641002

RESUMO

Intermediate filament (IF)-like cytoskeleton emerges as a versatile tool for cellular organization in all kingdoms of life, underscoring the importance of mechanistically understanding its diverse manifestations. We showed previously that, in Streptomyces (a bacterium with a mycelial lifestyle similar to that of filamentous fungi, including extreme cell and growth polarity), the IF protein FilP confers rigidity to the hyphae by an unknown mechanism. Here, we provide a possible explanation for the IF-like function of FilP by demonstrating its ability to self-assemble into a cis-interconnected regular network in vitro and its localization into structures consistent with a cytoskeletal network in vivo. Furthermore, we reveal that a spatially restricted interaction between FilP and DivIVA, the main component of the Streptomyces polarisome complex, leads to formation of apical gradients of FilP in hyphae undergoing active tip extension. We propose that the coupling between the mechanism driving polar growth and the assembly of an IF cytoskeleton provides each new hypha with an additional stress-bearing structure at its tip, where the nascent cell wall is inevitably more flexible and compliant while it is being assembled and matured. Our data suggest that recruitment of cytoskeleton around a cell polarity landmark is a broadly conserved strategy in tip-growing cells.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas do Citoesqueleto/metabolismo , Citoesqueleto/metabolismo , Multimerização Proteica/fisiologia , Streptomyces coelicolor/metabolismo , Proteínas de Bactérias/genética , Proteínas de Ciclo Celular/genética , Proteínas do Citoesqueleto/genética , Citoesqueleto/genética , Ligação Proteica/fisiologia , Streptomyces coelicolor/genética
5.
Microbiology (Reading) ; 159(Pt 5): 890-901, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23475952

RESUMO

During sporulation of Streptomyces coelicolor, the cytokinetic protein FtsZ is assembled into dozens of regularly spaced Z rings, which orchestrate the division of aerial hyphae into spores. We have previously found that a missense allele of ftsZ, ftsZ17(Spo), primarily affects sporulation septation rather than formation of cross-walls in vegetative mycelium. To clarify what aspect of FtsZ function is compromised in such non-sporulating mutants, we here use a genetic strategy to identify new ftsZ(Spo) alleles and describe how some of the mutations affect the biochemical properties of FtsZ. We have established a system for purification of recombinant untagged S. coelicolor FtsZ, and shown that it assembles dynamically into single protofilaments, displays a critical concentration indicative of cooperative assembly and has a rate of GTP hydrolysis that is substantially higher than that of the closely related Mycobacterium tuberculosis FtsZ. Of the nine isolated ftsZ(Spo) mutations, four affect the interface between the two main subdomains of FtsZ that is implicated in the assembly-induced conformational changes thought to mediate the GTP/GDP-driven cooperative assembly of FtsZ. We find that all these four mutations affect the polymerization behaviour of FtsZ in vitro. In addition, at least one ftsZ(Spo) mutation at the longitudinal contact surface between subunits in protofilaments strongly affects formation of polymers in vitro. We conclude that the assembly of Z rings during sporulation of S. coelicolor is highly sensitive to disturbances of FtsZ polymerization and therefore constitutes an excellent system for analysis of the elusive properties of FtsZ that mediate its characteristic polymerization dynamics.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/genética , Mutação , Streptomyces coelicolor/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Proteínas do Citoesqueleto/metabolismo , Dados de Sequência Molecular , Polimerização , Esporos Bacterianos/química , Esporos Bacterianos/genética , Esporos Bacterianos/crescimento & desenvolvimento , Esporos Bacterianos/metabolismo , Streptomyces coelicolor/química , Streptomyces coelicolor/genética , Streptomyces coelicolor/crescimento & desenvolvimento
6.
J Biol Chem ; 288(4): 2893-904, 2013 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-23235153

RESUMO

In silico analyses have revealed a conserved protein domain (CHDL) widely present in bacteria that has significant structural similarity to eukaryotic cadherins. A CHDL domain was shown to be present in RapA, a protein that is involved in autoaggregation of Rhizobium cells, biofilm formation, and adhesion to plant roots as shown by us and others. Structural similarity to cadherins suggested calcium-dependent oligomerization of CHDL domains as a mechanistic basis for RapA action. Here we show by circular dichroism spectroscopy, light scattering, isothermal titration calorimetry, and other methods that RapA2 from Rhizobium leguminosarum indeed exhibits a cadherin-like ß-sheet conformation and that its proper folding and stability are dependent on the binding of one calcium ion per protein molecule. By further in silico analysis we also reveal that RapA2 consists of two CHDL domains and expand the range of CHDL-containing proteins in bacteria and archaea. However, light scattering assays at various concentrations of added calcium revealed that RapA2 formed neither homo-oligomers nor hetero-oligomers with RapB (a distinct CHDL protein), indicating that RapA2 does not mediate cellular interactions through a cadherin-like mechanism. Instead, we demonstrate that RapA2 interacts specifically with the acidic exopolysaccharides (EPSs) produced by R. leguminosarum in a calcium-dependent manner, sustaining a role of these proteins in the development of the biofilm matrix made of EPS. Because EPS binding by RapA2 can only be attributed to its two CHDL domains, we propose that RapA2 is a calcium-dependent lectin and that CHDL domains in various bacterial and archaeal proteins confer carbohydrate binding activity to these proteins.


Assuntos
Proteínas de Bactérias/química , Caderinas/química , Proteínas de Ligação ao Cálcio/metabolismo , Lectinas/química , Lectinas/metabolismo , Polissacarídeos/metabolismo , Rhizobium leguminosarum/metabolismo , Sequência de Aminoácidos , Cálcio/química , Proteínas de Ligação ao Cálcio/química , Calorimetria/métodos , Dados de Sequência Molecular , Polissacarídeos/química , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Receptores de Superfície Celular/química , Proteínas Recombinantes/química , Homologia de Sequência de Aminoácidos , Solventes/química
7.
Blood ; 116(11): 1924-31, 2010 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-20530797

RESUMO

During infection, chemokines sequestered on endothelium induce recruitment of circulating leukocytes into the tissue where they chemotax along chemokine gradients toward the afflicted site. The aim of this in vivo study was to determine whether a chemokine gradient was formed intravascularly and influenced intraluminal neutrophil crawling and transmigration. A chemokine gradient was induced by placing a macrophage inflammatory protein-2 (MIP-2)-containing (CXCL2) gel on the cremaster muscle of anesthetized wild-type mice or heparanase-overexpressing transgenic mice (hpa-tg) with truncated heparan sulfate (HS) side chains. Neutrophil-endothelial interactions were visualized by intravital microscopy and chemokine gradients detected by confocal microscopy. Localized extravascular chemokine release (MIP-2 gel) induced directed neutrophil crawling along a chemotactic gradient immobilized on the endothelium and accelerated their recruitment into the target tissue compared with homogeneous extravascular chemokine concentration (MIP-2 superfusion). Endothelial chemokine sequestration occurred exclusively in venules and was HS-dependent, and neutrophils in hpa-tg mice exhibited random crawling. Despite similar numbers of adherent neutrophils in hpa-tg and wild-type mice, the altered crawling in hpa-tg mice was translated into decreased number of emigrated neutrophils and ultimately decreased the ability to clear bacterial infections. In conclusion, an intravascular chemokine gradient sequestered by endothelial HS effectively directs crawling leukocytes toward transmigration loci close to the infection site.


Assuntos
Movimento Celular/efeitos dos fármacos , Quimiocina CXCL2/metabolismo , Heparitina Sulfato/farmacologia , Neutrófilos/efeitos dos fármacos , Animais , Receptor 1 de Quimiocina CX3C , Quimiotaxia de Leucócito/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Glucuronidase/genética , Glucuronidase/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Migração e Rolagem de Leucócitos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia de Fluorescência/métodos , Microscopia de Vídeo/métodos , Músculos/irrigação sanguínea , Músculos/efeitos dos fármacos , Músculos/metabolismo , Neutrófilos/citologia , Neutrófilos/metabolismo , Receptores de Quimiocinas/genética , Receptores de Quimiocinas/metabolismo , Infecções Estafilocócicas/metabolismo , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/prevenção & controle , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/metabolismo
8.
J Bacteriol ; 192(13): 3368-78, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20435724

RESUMO

Bacterial cell morphogenesis requires coordination among multiple cellular systems, including the bacterial cytoskeleton and the cell wall. In the vibrioid bacterium Caulobacter crescentus, the intermediate filament-like protein crescentin forms a cell envelope-associated cytoskeletal structure that controls cell wall growth to generate cell curvature. We undertook a genetic screen to find other cellular components important for cell curvature. Here we report that deletion of a gene (wbqL) involved in the lipopolysaccharide (LPS) biosynthesis pathway abolishes cell curvature. Loss of WbqL function leads to the accumulation of an aberrant O-polysaccharide species and to the release of the S layer in the culture medium. Epistasis and microscopy experiments show that neither S-layer nor O-polysaccharide production is required for curved cell morphology per se but that production of the altered O-polysaccharide species abolishes cell curvature by apparently interfering with the ability of the crescentin structure to associate with the cell envelope. Our data suggest that perturbations in a cellular pathway that is itself fully dispensable for cell curvature can cause a disruption of cell morphogenesis, highlighting the delicate harmony among unrelated cellular systems. Using the wbqL mutant, we also show that the normal assembly and growth properties of the crescentin structure are independent of its association with the cell envelope. However, this envelope association is important for facilitating the local disruption of the stable crescentin structure at the division site during cytokinesis.


Assuntos
Proteínas de Bactérias/metabolismo , Caulobacter crescentus/citologia , Caulobacter crescentus/metabolismo , Lipopolissacarídeos/biossíntese , Proteínas de Bactérias/genética , Western Blotting , Caulobacter crescentus/genética , Lipopolissacarídeos/genética , Microscopia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
9.
EMBO J ; 28(9): 1208-19, 2009 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-19279668

RESUMO

The cytoskeleton is a key regulator of cell morphogenesis. Crescentin, a bacterial intermediate filament-like protein, is required for the curved shape of Caulobacter crescentus and localizes to the inner cell curvature. Here, we show that crescentin forms a single filamentous structure that collapses into a helix when detached from the cell membrane, suggesting that it is normally maintained in a stretched configuration. Crescentin causes an elongation rate gradient around the circumference of the sidewall, creating a longitudinal cell length differential and hence curvature. Such curvature can be produced by physical force alone when cells are grown in circular microchambers. Production of crescentin in Escherichia coli is sufficient to generate cell curvature. Our data argue for a model in which physical strain borne by the crescentin structure anisotropically alters the kinetics of cell wall insertion to produce curved growth. Our study suggests that bacteria may use the cytoskeleton for mechanical control of growth to alter morphology.


Assuntos
Caulobacter crescentus/citologia , Caulobacter crescentus/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/fisiologia , Fenômenos Biomecânicos , Escherichia coli/citologia , Escherichia coli/genética , Immunoblotting , Filamentos Intermediários/genética , Filamentos Intermediários/metabolismo , Filamentos Intermediários/fisiologia , Microscopia , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Peptidoglicano/metabolismo , Estrutura Terciária de Proteína
10.
Mol Microbiol ; 70(4): 1037-50, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18976278

RESUMO

Actin and tubulin cytoskeletons are conserved and widespread in bacteria. A strikingly intermediate filament (IF)-like cytoskeleton, composed of crescentin, is also present in Caulobacter crescentus and determines its specific cell shape. However, the broader significance of this finding remained obscure, because crescentin appeared to be unique to Caulobacter. Here we demonstrate that IF-like function is probably a more widespread phenomenon in bacteria. First, we show that 21 genomes of 26 phylogenetically diverse species encoded uncharacterized proteins with a central segmented coiled coil rod domain, which we regarded as a key structural feature of IF proteins and crescentin. Experimental studies of three in silico predicted candidates from Mycobacterium and other actinomycetes revealed a common IF-like property to spontaneously assemble into filaments in vitro. Furthermore, the IF-like protein FilP formed cytoskeletal structures in the model actinomycete Streptomyces coelicolor and was needed for normal growth and morphogenesis. Atomic force microscopy of living cells revealed that the FilP cytoskeleton contributed to mechanical fitness of the hyphae, thus closely resembling the function of metazoan IF. Together, the bioinformatic and experimental data suggest that an IF-like protein architecture is a versatile design that is generally present in bacteria and utilized to perform diverse cytoskeletal tasks.


Assuntos
Proteínas de Bactérias/fisiologia , Proteínas de Filamentos Intermediários/fisiologia , Filamentos Intermediários/ultraestrutura , Streptomyces coelicolor/ultraestrutura , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Sequência Conservada , DNA Bacteriano/genética , Evolução Molecular , Genes Bacterianos , Genoma Bacteriano , Proteínas de Filamentos Intermediários/genética , Filamentos Intermediários/genética , Microscopia de Força Atômica , Microscopia Eletrônica , Dados de Sequência Molecular , Plasmídeos , Alinhamento de Sequência , Streptomyces coelicolor/genética
11.
FEMS Microbiol Ecol ; 65(2): 279-88, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18393991

RESUMO

The effect of the rhizobium adhesion protein RapA1 on Rhizobium leguminosarum bv. trifolii adsorption to Trifolium pratense (red clover) roots was investigated. We altered RapA1 production by cloning its encoding gene under the plac promoter into the stable vector pHC60. After introducing this plasmid in R. leguminosarum bv. trifolii, three to four times more RapA1 was produced, and two to five times higher adsorption to red clover roots was obtained, as compared with results for the empty vector. Enhanced adsorption was also observed on soybean and alfalfa roots, not related to R. leguminosarum cross inoculation groups. Although the presence of 1 mM Ca2+ during rhizobial growth enhanced adsorption, it was unrelated to RapA1 level. Similar effects were obtained when the same plasmid was introduced in Rhizobium etli for its adsorption to bean roots. Although root colonization by the RapA1-overproducing strain was also higher, nodulation was not enhanced. In addition, in vitro biofilm formation was similar to the wild-type both on polar and on hydrophobic surfaces. These results suggest that RapA1 receptors are present in root but not on inert surfaces, and that the function of this protein is related to rhizosphere colonization.


Assuntos
Aderência Bacteriana , Proteínas de Bactérias/metabolismo , Raízes de Plantas/microbiologia , Trifolium/microbiologia , Proteínas de Bactérias/genética , Biofilmes/crescimento & desenvolvimento , Fabaceae/classificação , Fabaceae/microbiologia , Fixação de Nitrogênio/fisiologia , Rhizobium leguminosarum/genética , Rhizobium leguminosarum/crescimento & desenvolvimento , Rhizobium leguminosarum/fisiologia
12.
Mol Microbiol ; 65(6): 1458-73, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17824926

RESUMO

Sporulation in aerial hyphae of Streptomyces coelicolor involves profound changes in regulation of fundamental morphogenetic and cell cycle processes to convert the filamentous and multinucleoid cells to small unigenomic spores. Here, a novel sporulation locus consisting of smeA (encoding a small putative membrane protein) and sffA (encoding a SpoIIIE/FtsK-family protein) is characterized. Deletion of smeA-sffA gave rise to pleiotropic effects on spore maturation, and influenced the segregation of chromosomes and placement of septa during sporulation. Both smeA and sffA were expressed specifically in apical cells of sporogenic aerial hyphae simultaneously with or slightly after Z-ring assembly. The presence of smeA-like genes in streptomycete chromosomes, plasmids and transposons, often paired with a gene for a SpoIIIE/FtsK- or Tra-like protein, indicates that SmeA and SffA functions might be related to DNA transfer. During spore development SffA accumulated specifically at sporulation septa where it colocalized with FtsK. However, sffA did not show redundancy with ftsK, and SffA function appeared distinct from the DNA translocase activity displayed by FtsK during closure of sporulation septa. The septal localization of SffA was dependent on SmeA, suggesting that SmeA may act as an assembly factor for SffA and possibly other proteins required during spore maturation.


Assuntos
Proteínas de Bactérias/metabolismo , Divisão Celular , Proteínas de Membrana/metabolismo , Streptomyces coelicolor/citologia , Streptomyces coelicolor/fisiologia , Sequência de Aminoácidos , Proteínas de Bactérias/química , Deleção de Genes , Proteínas de Membrana/química , Dados de Sequência Molecular , Transporte Proteico , Endonucleases Específicas para DNA e RNA de Cadeia Simples/metabolismo , Esporos Bacterianos/ultraestrutura , Streptomyces coelicolor/crescimento & desenvolvimento , Streptomyces coelicolor/ultraestrutura
13.
J Mol Microbiol Biotechnol ; 11(3-5): 152-8, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16983192

RESUMO

Eukaryotic cytoskeleton consists of three main types of filaments: actin microfilaments, microtubules and intermediate filaments (IFs). Actin and tubulin-like proteins are also found in bacteria where they perform diverse cytoskeletal functions. IFs, however, are considered to be a characteristic constituent of metazoan cells only, where they (among other functions) are involved in determination and maintenance of cell shape and cellular integrity. Surprisingly, a coiled coil-rich protein called crescentin was recently shown to play a key role in determining the complex curved and helical cell shapes of the bacterium Caulobacter crescentus, and to exhibit several characteristic properties of animal IF proteins. First, the arrangement of the coiled coil domains of crescentin closely resembles the tripartite molecular architecture of IF proteins. Second, crescentin also possesses the defining biochemical property of IF proteins to assemble into 10-nm-wide filaments in vitro without cofactors. Furthermore, crescentin forms a higher-order helical structure in vivo, which is localized asymmetrically along the concave side of the cell. In close association with the cell membrane, the crescentin structure promotes the helical growth of the cell and thereby determines a curved or a helical shape, depending on the length of the cell. The unexpected finding of an IF-like element in a bacterium raises several interesting questions concerning, for example, the molecular mechanisms whereby complex and asymmetric cell shapes are generated by different bacteria, or the functional and evolutionary relatedness of crescentin to animal IF proteins.


Assuntos
Proteínas de Bactérias/fisiologia , Caulobacter crescentus/fisiologia , Filamentos Intermediários/fisiologia , Citoesqueleto/fisiologia , Estrutura Terciária de Proteína
14.
J Bacteriol ; 186(14): 4774-80, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15231809

RESUMO

The type three secretion system (TTSS) encoded by pNGR234a, the symbiotic plasmid of Rhizobium sp. strain NGR234, is responsible for the flavonoid- and NodD1-dependent secretion of nodulation outer proteins (Nops). Abolition of secretion of all or specific Nops significantly alters the nodulation ability of NGR234 on many of its hosts. In the closely related strain Rhizobium fredii USDA257, inactivation of the TTSS modifies the host range of the mutant so that it includes the improved Glycine max variety McCall. To assess the impact of individual TTSS-secreted proteins on symbioses with legumes, various attempts were made to identify nop genes. Amino-terminal sequencing of peptides purified from gels was used to characterize NopA, NopL, and NopX, but it failed to identify SR3, a TTSS-dependent product of USDA257. By using phage display and antibodies that recognize SR3, the corresponding protein of NGR234 was identified as NopP. NopP, like NopL, is an effector secreted by the TTSS of NGR234, and depending on the legume host, it may have a deleterious or beneficial effect on nodulation or it may have little effect.


Assuntos
Proteínas de Bactérias/fisiologia , Fixação de Nitrogênio , Rhizobium/genética , Rhizobium/fisiologia , Simbiose , Sequência de Aminoácidos , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sequência Conservada , Flavonoides/metabolismo , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Dados de Sequência Molecular , Biblioteca de Peptídeos , Plantas/microbiologia , Plasmídeos , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Microbiologia do Solo
15.
Cell ; 115(6): 705-13, 2003 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-14675535

RESUMO

Various cell shapes are encountered in the prokaryotic world, but how they are achieved is poorly understood. Intermediate filaments (IFs) of the eukaryotic cytoskeleton play an important role in cell shape in higher organisms. No such filaments have been found in prokaryotes. Here, we describe a bacterial equivalent to IF proteins, named crescentin, whose cytoskeletal function is required for the vibrioid and helical shapes of Caulobacter crescentus. Without crescentin, the cells adopt a straight-rod morphology. Crescentin has characteristic features of IF proteins including the ability to assemble into filaments in vitro without energy or cofactor requirements. In vivo, crescentin forms a helical structure that colocalizes with the inner cell curvatures beneath the cytoplasmic membrane. We propose that IF-like filaments of crescentin assemble into a helical structure, which by applying its geometry to the cell, generates a vibrioid or helical cell shape depending on the length of the cell.


Assuntos
Proteínas de Bactérias/isolamento & purificação , Caulobacter crescentus/metabolismo , Proteínas de Filamentos Intermediários/isolamento & purificação , Filamentos Intermediários/metabolismo , Proteínas de Bactérias/genética , Caulobacter crescentus/ultraestrutura , Membrana Celular/metabolismo , Tamanho Celular/fisiologia , Células Eucarióticas/metabolismo , Células Eucarióticas/ultraestrutura , Evolução Molecular , Proteínas de Filamentos Intermediários/genética , Filamentos Intermediários/ultraestrutura , Conformação Proteica
16.
Annu Rev Microbiol ; 57: 225-47, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-14527278

RESUMO

The dimorphic and intrinsically asymmetric bacterium Caulobacter crescentus has become an important model organism to study the bacterial cell cycle, cell polarity, and polar differentiation. A multifaceted regulatory network orchestrates the precise coordination between the development of polar organelles and the cell cycle. One master response regulator, CtrA, directly controls the initiation of chromosome replication as well as several aspects of polar morphogenesis and cell division. CtrA activity is temporally and spatially regulated by multiple partially redundant control mechanisms, such as transcription, phosphorylation, and targeted proteolysis. A multicomponent signal transduction network upstream CtrA, containing histidine kinases CckA, PleC, DivJ, and DivL and the essential response regulator DivK, contributes to the control of CtrA activity in response to cell cycle and developmental cues. An intriguing feature of this signaling network is the dynamic cell cycle-dependent polar localization of its components, which is believed to have a novel regulatory function.


Assuntos
Caulobacter crescentus/fisiologia , Ciclo Celular/fisiologia , Diferenciação Celular/fisiologia , Polaridade Celular/fisiologia , Proteínas de Bactérias , Caulobacter crescentus/genética , Ciclo Celular/genética , Diferenciação Celular/genética , Polaridade Celular/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/fisiologia , Histidina Quinase , Morfogênese/genética , Morfogênese/fisiologia , Proteínas Quinases/genética , Proteínas Quinases/fisiologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia
17.
Mol Plant Microbe Interact ; 16(8): 727-37, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12906117

RESUMO

A novel gene bank of Bradyrhizobium japonicum USDA110spc4 was constructed using pG3DSS, a phagemid vector designed for detecting genes encoding secreted proteins. In this phagemid, the phage protein III lacks its indigenous signal peptide required for protein secretion, thus recombinant fusion proteins are displayed on the phage surface only if a functional signal peptide is provided by an inserted DNA fragment. In addition, the N-terminal half of protein III has been replaced by a short linker region (the E-tag) that is recognized by a monoclonal antibody, which enables isolation of phages displaying a fusion protein. The expression library described here, therefore, provides a powerful means to affinity select for B. japonicum genes encoding extracytoplasmic proteins. In total, 182 DNA sequences were analyzed, among which 132 different putative extracytoplasmic proteins could be identified. The function of most proteins could be predicted and support an extracytoplasmic localization. In addition, genes encoding novel extracytoplasmic proteins were found. In particular, a novel family of small proteins has been identified that is characterized by a conserved pattern of four cysteine residues.


Assuntos
Proteínas de Bactérias/genética , Bradyrhizobium/genética , Biblioteca de Peptídeos , Sinais Direcionadores de Proteínas/genética , Sequência de Aminoácidos , Dados de Sequência Molecular , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
18.
Mol Microbiol ; 47(5): 1279-90, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12603734

RESUMO

The CtrA master transcriptional regulator is a central control element in Caulobacter cell cycle progression and polar morphogenesis. Because of its critical role, CtrA activity is temporally regulated by multiple mechanisms including phosphorylation and ClpXP-dependent degradation of CtrA. The CckA histidine kinase is known to contribute to CtrA phosphorylation. We show here that genes differentially expressed in a ctrA temperature-sensitive (ts) mutant are similarly affected in a cckA ts mutant, that the phosphorylation of CckA coincides temporally with CtrA phosphorylation during the cell cycle, and that CckA is essential for viability because it is required for CtrA phosphorylation. Thus, it is the signal transduction pathway mediated by CckA that culminates in CtrA activation, which is temporally regulated and essential for cell cycle progression. CckA also positively regulates CtrA activity by a mechanism that is independent of CtrA phosphorylation. CtrA is more stable in the presence of CckA than it is absence, suggesting that CckA may also be involved, directly or indirectly, in the regulation of CtrA proteolysis.


Assuntos
Proteínas de Bactérias/fisiologia , Caulobacter crescentus/enzimologia , Proteínas de Ligação a DNA/metabolismo , Proteínas Quinases/fisiologia , Fatores de Transcrição/metabolismo , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Caulobacter crescentus/citologia , Caulobacter crescentus/genética , Ciclo Celular/genética , Ciclo Celular/fisiologia , Polaridade Celular , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Histidina Quinase , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Fosforilação , Proteínas Quinases/genética , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais
19.
Microbiology (Reading) ; 147(Pt 3): 549-559, 2001 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11238962

RESUMO

The phage-display cloning technique was used to find rhizobial proteins that bind to receptors located on the bacterial cell surface. The aim was to clone the gene(s) encoding rhicadhesin, a universal rhizobial adhesion protein, and/or other cell-surface-binding proteins. Four such Rhizobium-adhering proteins (Rap) were revealed in Rhizobium leguminosarum bv. trifolii strain R200. The binding is mediated by homologous Ra domains in these proteins. One member of the Rap protein family, named RapA1, is a secreted calcium-binding protein, which are also properties expected for rhicadhesin. However, the size of the protein (24 kDa instead of 14 kDa) and its distribution among different rhizobia (present in only Rhizobium leguminosarum biovars and R. etli instead of all members of Rhizobiaceae argue against RapA1 being rhicadhesin. Protein RapA1 consists of two homologous Ra domains and agglutinates R200 cells by binding to specific receptors located at one cell pole during exponential growth. Expression of these cell-surface receptors was detected only in rhizobia that produce the RapA proteins. The authors propose that the homologous Ra domains, found to be present also in other proteins with different structure, represent lectin domains, which confer upon these proteins the ability to recognize their cognate carbohydrate structures.


Assuntos
Adesinas Bacterianas/genética , Adesinas Bacterianas/metabolismo , Receptores de Superfície Celular/metabolismo , Rhizobium/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Genes Bacterianos , Microscopia de Fluorescência , Dados de Sequência Molecular , Família Multigênica , Biblioteca de Peptídeos , Rhizobium/genética , Rhizobium/crescimento & desenvolvimento
20.
Microbiology (Reading) ; 145 ( Pt 5): 1253-1262, 1999 May.
Artigo em Inglês | MEDLINE | ID: mdl-10376842

RESUMO

Six genes involved in cellulose synthesis in Rhizobium leguminosarum bv. trifolii were identified using Tn5 mutagenesis. Four of them displayed homology to the previously cloned and sequenced Agrobacterium tumefaciens cellulose genes celA, celB, celC and celE. These genes are organized similarly in R. leguminosarum bv. trifolii. In addition, there were strong indications that two tandemly located genes, celR1 and celR2, probably organized as one operon, are involved in the regulation of cellulose synthesis. The deduced amino acid sequences of these genes displayed a high degree of similarity to the Caulobacter crescentus DivK and PleD proteins that belong to the family of two-component response regulators. This is to our knowledge the first report of genes involved in the regulation of cellulose synthesis. Results from attachment assays and electron microscopic studies indicated that cellulose synthesis in R. leguminosarum bv. trifolii is induced upon close contact with plant roots during the attachment process.


Assuntos
Celulose/biossíntese , Genes Bacterianos , Genes Reguladores , Rhizobium leguminosarum/genética , Sequência de Aminoácidos , Elementos de DNA Transponíveis , Fabaceae/microbiologia , Regulação Bacteriana da Expressão Gênica , Teste de Complementação Genética , Dados de Sequência Molecular , Mutagênese Insercional , Plantas Medicinais , Rhizobium leguminosarum/crescimento & desenvolvimento , Rhizobium leguminosarum/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...