Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Clin Epigenetics ; 11(1): 68, 2019 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-31060628

RESUMO

BACKGROUND: DNA methyltransferases (DNMTs) are epigenetic enzymes involved in embryonic development, cell differentiation, epithelial to mesenchymal transition, and control of gene expression, whose overexpression or enhanced catalytic activity has been widely reported in cancer initiation and progression. To date, two DNMT inhibitors (DNMTi), 5-azacytidine (5-AZA) and 5-aza-2'-deoxycytidine (DAC), are approved for the treatment of myelodysplastic syndromes and acute myeloid leukemia. Nevertheless, they are chemically instable and quite toxic for healthy cells; thus, the discovery of novel DNMTi is urgent. RESULTS: Here, we report the identification of a new quinoline-based molecule, MC3353, as a non-nucleoside inhibitor and downregulator of DNMT. This compound was able, in promoter demethylating assays, to induce enhanced green fluorescence protein (EGFP) gene expression in HCT116 cells and transcription in a cytomegalovirus (CMV) promoter-driven luciferase reporter system in KG-1 cells. Moreover, MC3353 displayed a strong antiproliferative activity when tested on HCT116 colon cancer cells after 48 h of treatment at 0.5 µM. At higher doses, this compound provided a cytotoxic effect in double DNMT knockout HCT116 cells. MC3353 was also screened on a different panel of cancer cells (KG-1 and U-937 acute myeloid leukemia, RAJI Burkitt's lymphoma, PC-3 prostate cancer, and MDA-MB-231 breast cancer), where it arrested cell proliferation and reduced viability after 48 h of treatment with IC50 values ranging from 0.3 to 0.9 µM. Compared to healthy cell models, MC3353 induced apoptosis (e.g., U-937 and KG-1 cells) or necrosis (e.g., RAJI cells) at lower concentrations. Importantly, together with the main DNMT3A enzyme inhibition, MC3353 was also able to downregulate the DNMT3A protein level in selected HCT116 and PC-3 cell lines. Additionally, this compound provided impairment of the epithelial-to-mesenchymal transition (EMT) by inducing E-cadherin while reducing matrix metalloproteinase (MMP2) mRNA and protein levels in PC-3 and HCT116 cells. Last, tested on a panel of primary osteosarcoma cell lines, MC3353 markedly inhibited cell growth with low single-digit micromolar IC50 ranging from 1.1 to 2.4 µM. Interestingly, in Saos-2 osteosarcoma cells, MC3353 induced both expression of genes and mineralized the matrix as evidence of osteosarcoma to osteoblast differentiation. CONCLUSIONS: The present work describes MC3353 as a novel DNMTi displaying a stronger in cell demethylating ability than both 5-AZA and DAC, providing re-activation of the silenced ubiquitin C-terminal hydrolase L1 (UCHL1) gene. MC3353 displayed dose- and time-dependent antiproliferative activity in several cancer cell types, inducing cell death and affecting EMT through E-cadherin and MMP2 modulation. In addition, this compound proved efficacy even in primary osteosarcoma cell models, through the modulation of genes involved in osteoblast differentiation.


Assuntos
Aminoquinolinas/síntese química , Aminoquinolinas/farmacologia , DNA-Citosina Metilases/antagonistas & inibidores , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Neoplasias/metabolismo , Aminoquinolinas/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Metilação de DNA , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/química , Epigênese Genética , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HCT116 , Humanos , Neoplasias/tratamento farmacológico , Pirimidinas/química
3.
J Med Chem ; 60(11): 4665-4679, 2017 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-28463515

RESUMO

Aberrant DNA hypermethylation of promoter of tumor suppressor genes is commonly observed in cancer, and its inhibition by small molecules is promising for their reactivation. Here we designed bisubstrate analogues-based inhibitors, by mimicking each substrate, the S-adenosyl-l-methionine and the deoxycytidine, and linking them together. This approach resulted in quinazoline-quinoline derivatives as potent inhibitors of DNMT3A and DNMT1, some showing certain isoform selectivity. We highlighted the importance of (i) the nature and rigidity of the linker between the two moieties for inhibition, as (ii) the presence of the nitrogen on the quinoline group, and (iii) of a hydrophobic group on the quinazoline. The most potent inhibitors induced demethylation of CDKN2A promoter in colon carcinoma HCT116 cells and its reactivation after 7 days of treatment. Furthermore, in a leukemia cell model system, we found a correlation between demethylation of the promoter induced by the treatment, chromatin opening at the promoter, and the reactivation of a reporter gene.


Assuntos
DNA (Citosina-5-)-Metiltransferases/antagonistas & inibidores , Desenho de Fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Neoplasias/enzimologia , Linhagem Celular Tumoral , DNA (Citosina-5-)-Metiltransferase 1 , Metilação de DNA , DNA Metiltransferase 3A , Genes Supressores de Tumor , Humanos , Neoplasias/patologia , Especificidade por Substrato
4.
BMC Cancer ; 16: 700, 2016 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-27581651

RESUMO

BACKGROUND: In breast cancer, the epithelial to mesenchyme transition (EMT) is associated to tumour dissemination, drug resistance and high relapse risks. It is partly controlled by epigenetic modifications such as histone acetylation and methylation. The identification of genes involved in these reversible modifications represents an interesting therapeutic strategy to fight metastatic disease by inducing mesenchymal cell differentiation to an epithelial phenotype. METHODS: We designed a siRNA library based on chromatin modification-related to functional domains and screened it in the mesenchymal breast cancer cell line MDA-MB-231. The mesenchyme to epithelium transition (MET) activation was studied by following human E-CADHERIN (E-CAD) induction, a specific MET marker, and cell morphology. Candidate genes were validated by studying the expression of several differential marker genes and their impact on cell migration. RESULTS: The screen led to the identification of 70 gene candidates among which some are described to be, directly or indirectly, involved in EMT like ZEB1, G9a, SMAD5 and SMARCD3. We also identified the DOT1L as involved in EMT regulation in MDA-MB-231. Moreover, for the first time, KAT5 gene was linked to the maintenance of the mesenchymal phenotype. CONCLUSIONS: A multi-parametric RNAi screening approach was developed to identify new EMT regulators such as KAT5 in the triple negative breast cancer cell line MDA-MB-231.


Assuntos
Neoplasias da Mama/patologia , Transição Epitelial-Mesenquimal/genética , Interferência de RNA , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Feminino , Técnicas de Silenciamento de Genes , Humanos , RNA Interferente Pequeno , Reação em Cadeia da Polimerase em Tempo Real
5.
Chemistry ; 22(19): 6676-86, 2016 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-27031925

RESUMO

A series of 12 analogues of the Cer transfer protein (CERT) antagonist HPA-12 with long aliphatic chains were prepared as their (1R,3S)-syn and (1R,3R)-anti stereoisomers from pivotal chiral oxoamino acids. The enantioselective access to these intermediates as well as their ensuing transformation relied on a practical crystallization-induced asymmetric transformation (CIAT) process. Sonogashira coupling followed by triple bond reduction and thiophene ring hydrodesulfurization (HDS) into the corresponding alkane moieties was then implemented to complete the synthetic routes delivering the targeted HPA-12 analogues in concise 4- to 6-step reaction sequences. Ten compounds were evaluated regarding their ability to bind to the CERT START domain by using the recently developed time-resolved FRET-based homogeneous (HTR-FRET) binding assay. The introduction of a lipophilic appendage on the phenyl moiety led to an overall 10- to 1000-fold enhancement of the protein binding, with the highest effect being observed for a n-hexyl residue in the meta position. The importance of the phenyl ring for the activity was indicated by the reduced potency of the 3-deoxyphytoceramide aliphatic analogues. The 1,3-syn stereoisomers were systematically more potent than their 1,3-anti analogues. In silico studies were used to rationalized these trends, leading to a model of protein recognition coherent with the stronger binding of (1R,3S)-syn HPAs.


Assuntos
Amidas/química , Ceramidas/química , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/química , Tiofenos/química , Amidas/metabolismo , Transporte Biológico , Ceramidas/metabolismo , Ligantes , Modelos Moleculares , Ligação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Estereoisomerismo , Relação Estrutura-Atividade
6.
Future Med Chem ; 8(4): 373-80, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26976348

RESUMO

DNA methylation is the most studied epigenetic event. Since the methylation profile of the genome is widely modified in cancer cells, DNA methyltransferases are the target of new anticancer therapies. Nucleosidic inhibitors suffer from toxicity and chemical stability, while non-nucleosidic inhibitors lack potency. Here, we found a novel DNMT inhibitor scaffold by enzymatic screening and structure-activity relationship studies. The optimization studies led to an inhibitor containing three fragments: a gallate frame, a hydrazone linker and a benzothiazole moiety. Interestingly, the compound inhibits DNMT3A with micromolar potency (EC50 = 1.6 µM) and does not inhibit DNMT1; this DNMT3A selectivity is supported by a docking study. Finally, the compound reactivates a reporter gene in leukemia KG-1 cells.


Assuntos
Antineoplásicos/farmacologia , DNA (Citosina-5-)-Metiltransferases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Ácido Gálico/farmacologia , Hidrazonas/farmacologia , Neoplasias/tratamento farmacológico , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA Metiltransferase 3A , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Ácido Gálico/química , Humanos , Hidrazonas/síntese química , Hidrazonas/química , Neoplasias/metabolismo , Relação Estrutura-Atividade
7.
Bioorg Med Chem ; 23(17): 5946-53, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26220519

RESUMO

DNA methylation, an epigenetic modification regulating gene expression, is a promising target in cancer. In an effort to identify new non nucleosidic inhibitors of DNA methyltransferases, the enzymes responsible for DNA methylation, we carried out a high-throughput screening of 66,000 chemical compounds based on an enzymatic assay against catalytic DNMT3A. A family of propiophenone derivatives was identified. After chemical optimization and structure activity relationship studies, a new inhibitor (33) was obtained with an EC50 of 2.1 µM against DNMT3A. The mechanism of inhibition of the compound was investigated as it forms a reactive Michael acceptor group in situ. Thereby, the Michael acceptor 20 was identified. This compound was further characterized for its biological activity in cancer cells.


Assuntos
DNA (Citosina-5-)-Metiltransferases/química , DNA (Citosina-5-)-Metiltransferases/síntese química , DNA Metiltransferase 3A , Epigenômica , Humanos , Estrutura Molecular , Relação Estrutura-Atividade
8.
Bioorg Med Chem ; 23(9): 2004-9, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25818765

RESUMO

The first unified synthetic route to the four enantiopure HPA-12 stereoisomers in multi-gram scale is reported based on Crystallization-Induced Asymmetric Transformation (CIAT) technology. This preparative stereoselective synthesis allowed the unprecedented comparative evaluation of HPA-12 stereoisomers regarding their interaction with the CERT START domain. In vitro binding assay coupled to in silico docking approach indicate a possible interaction for the four derivatives. The first TR-FRET homogeneous-phase assay was developed to quantify their binding to the START domain, allowing complete determination of HPA-12 EC50. Results indicate that not only the (1R,3S) lead to the strongest binding, but that both 1R and 3S stereocenters similarly contribute to extent of recognition This automated homogenous assay further opens up promising prospect for the identification of novel potential CERT antagonist by means of high throughput screening.


Assuntos
Amidas/síntese química , Amidas/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Amidas/química , Sítios de Ligação/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Modelos Moleculares , Conformação Molecular , Estereoisomerismo , Relação Estrutura-Atividade
9.
J Biomol Screen ; 20(6): 779-87, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25716975

RESUMO

Sphingomyelin (SM) metabolism deregulation was recently associated with cell metastasis and chemoresistance, and several pharmacological strategies targeting SM metabolism have emerged. The ceramide (Cer) generated in the endoplasmic reticulum (ER) is transferred to the Golgi apparatus to be transformed into SM. CERamide Transfer (CERT) protein is responsible for the nonvesicular trafficking of Cer to Golgi. Blocking the CERT-mediated ER-to-Golgi Cer transfer is an interesting antioncogenic therapeutic approach. Here, we developed a protein-lipid interaction assay for the identification of new CERT-Cer interaction inhibitors. Frequently used for protein-protein interaction by enzymatic and analyte dosage assays, homogeneous time-resolved fluorescence technology was adapted for the first time to a lipid-protein binding assay. This test was developed for high-throughput screening, and a library of 672 molecules was screened. Seven hits were identified, and their inhibitory effect quantified by EC50 measurements showed binding inhibition three orders of magnitude more potent than that of HPA12, the unique known CERT antagonist to date. Each compound was tested on an independent test, confirming its high affinity and pharmacological potential.


Assuntos
Proteínas de Transporte/metabolismo , Ceramidas/metabolismo , Descoberta de Drogas , Ensaios de Triagem em Larga Escala , Domínios e Motivos de Interação entre Proteínas , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Proteínas de Transporte/química , Descoberta de Drogas/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Humanos , Cinética , Ligação Proteica , Proteínas Serina-Treonina Quinases/química , Transporte Proteico/efeitos dos fármacos , Reprodutibilidade dos Testes , Bibliotecas de Moléculas Pequenas
10.
J Biol Chem ; 290(10): 6293-302, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25525263

RESUMO

Among the epigenetic marks, DNA methylation is one of the most studied. It is highly deregulated in numerous diseases, including cancer. Indeed, it has been shown that hypermethylation of tumor suppressor genes promoters is a common feature of cancer cells. Because DNA methylation is reversible, the DNA methyltransferases (DNMTs), responsible for this epigenetic mark, are considered promising therapeutic targets. Several molecules have been identified as DNMT inhibitors and, among the non-nucleoside inhibitors, 4-aminoquinoline-based inhibitors, such as SGI-1027 and its analogs, showed potent inhibitory activity. Here we characterized the in vitro mechanism of action of SGI-1027 and two analogs. Enzymatic competition studies with the DNA substrate and the methyl donor cofactor, S-adenosyl-l-methionine (AdoMet), displayed AdoMet non-competitive and DNA competitive behavior. In addition, deviations from the Michaelis-Menten model in DNA competition experiments suggested an interaction with DNA. Thus their ability to interact with DNA was established; although SGI-1027 was a weak DNA ligand, analog 5, the most potent inhibitor, strongly interacted with DNA. Finally, as 5 interacted with DNMT only when the DNA duplex was present, we hypothesize that this class of chemical compounds inhibit DNMTs by interacting with the DNA substrate.


Assuntos
Aminoquinolinas/química , DNA (Citosina-5-)-Metiltransferases/química , Metilação de DNA/genética , Inibidores Enzimáticos/química , Pirimidinas/química , Aminoquinolinas/farmacologia , DNA/química , DNA/genética , DNA (Citosina-5-)-Metiltransferases/antagonistas & inibidores , DNA (Citosina-5-)-Metiltransferases/genética , Inibidores Enzimáticos/uso terapêutico , Epigenômica , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Pirimidinas/farmacologia
11.
PLoS One ; 9(5): e96941, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24810902

RESUMO

Chemical manipulations performed on the histone H3 lysine 9 methyltransferases (G9a/GLP) inhibitor BIX-01294 afforded novel desmethoxyquinazolines able to inhibit the DNA methyltransferase DNMT3A at low micromolar levels without any significant inhibition of DNMT1 and G9a. In KG-1 cells such compounds, when tested at sub-toxic doses, induced the luciferase re-expression in a stable construct controlled by a cytomegalovirus (CMV) promoter silenced by methylation (CMV-luc assay). Finally, in human lymphoma U-937 and RAJI cells, the N-(1-benzylpiperidin-4-yl)-2-(4-phenylpiperazin-1-yl)quinazolin-4-amine induced the highest proliferation arrest and cell death induction starting from 10 µM, in agreement with its DNMT3A inhibitory potency.


Assuntos
Azepinas/química , Azepinas/farmacologia , DNA (Citosina-5-)-Metiltransferases/antagonistas & inibidores , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Quinazolinas/química , Quinazolinas/farmacologia , Azepinas/metabolismo , Domínio Catalítico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , DNA (Citosina-5-)-Metiltransferases/química , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA Metiltransferase 3A , Inibidores Enzimáticos/metabolismo , Antígenos de Histocompatibilidade/química , Antígenos de Histocompatibilidade/metabolismo , Histona-Lisina N-Metiltransferase/química , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Simulação de Acoplamento Molecular , Quinazolinas/metabolismo , Relação Estrutura-Atividade
12.
ChemMedChem ; 9(3): 590-601, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24678024

RESUMO

Quinoline derivative SGI-1027 (N-(4-(2-amino-6-methylpyrimidin-4-ylamino)phenyl)-4-(quinolin-4-ylamino)benzamide) was first described in 2009 as a potent inhibitor of DNA methyltransferase (DNMT) 1, 3A and 3B. Based on molecular modeling studies, performed using the crystal structure of Haemophilus haemolyticus cytosine-5 DNA methyltransferase (MHhaI C5 DNMT), which suggested that the quinoline and the aminopyridimine moieties of SGI-1027 are important for interaction with the substrates and protein, we designed and synthesized 25 derivatives. Among them, four compounds­namely the derivatives 12, 16, 31 and 32­exhibited activities comparable to that of the parent compound. Further evaluation revealed that these compounds were more potent against human DNMT3A than against human DNMT1 and induced the re-expression of a reporter gene, controlled by a methylated cytomegalovirus (CMV) promoter, in leukemia KG-1 cells. These compounds possessed cytotoxicity against leukemia KG-1 cells in the micromolar range, comparable with the cytotoxicity of the reference compound, SGI-1027. Structure­activity relationships were elucidated from the results. First, the presence of a methylene or carbonyl group to conjugate the quinoline moiety decreased the activity. Second, the size and nature of the aromatic or heterocycle subsitutents effects inhibition activity: tricyclic moieties, such as acridine, were found to decrease activity, while bicyclic substituents, such as quinoline, were well tolerated. The best combination was found to be a bicyclic substituent on one side of the compound, and a one-ring moiety on the other side. Finally, the orientation of the central amide bond was found to have little effect on the biological activity. This study provides new insights in to the structure-activity relationships of SGI-1027 and its derivative.


Assuntos
Aminoquinolinas/síntese química , Aminoquinolinas/farmacologia , Metilação de DNA/efeitos dos fármacos , Desenho de Fármacos , Pirimidinas/síntese química , Pirimidinas/farmacologia , Quinolinas/química , Aminoquinolinas/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , DNA (Citosina-5-)-Metiltransferase 1 , DNA (Citosina-5-)-Metiltransferases/antagonistas & inibidores , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA Metiltransferase 3A , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Pirimidinas/química , Relação Estrutura-Atividade
13.
ChemMedChem ; 8(11): 1779-86, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24014463

RESUMO

Illumination by acetylene: Systematic structural variations in a series of archetypal acetylenic lipids derived from the naturally occurring (S,E)-icos-4-en-1-yn-3-ol allowed the discovery of a series of 3R-like 1,4-di-unsaturated carbinol units with a significant and systematic enantiomeric effect on cytotoxicity.


Assuntos
Alcanos , Alcenos , Antineoplásicos , Descoberta de Drogas , Metanol , Alcanos/química , Alcanos/farmacologia , Alcenos/química , Alcenos/farmacologia , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Concentração Inibidora 50 , Metanol/química , Metanol/farmacologia , Estrutura Molecular , Petrosia/química , Estereoisomerismo
14.
Nucleic Acids Res ; 41(19): e185, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23980028

RESUMO

DNA methylation is an important epigenetic mark in eukaryotes, and aberrant pattern of this modification is involved in numerous diseases such as cancers. Interestingly, DNA methylation is reversible and thus is considered a promising therapeutic target. Therefore, there is a need for identifying new small inhibitors of C5 DNA methyltransferases (DNMTs). Despite the development of numerous in vitro DNMT assays, there is a lack of reliable tests suitable for high-throughput screening, which can also give insights into inhibitor mechanisms of action. We developed a new test based on scintillation proximity assay meeting these requirements. After optimizing our assay on human DNMT1 and calibrating it with two known inhibitors, we carried out S-Adenosyl-l-Methionine and DNA competition studies on three inhibitors and were able to determine each mechanism of action. Finally, we showed that our test was applicable to 3 other methyltransferases sources: human DNMT3A, bacterial M.SssI and cellular extracts as well.


Assuntos
DNA (Citosina-5-)-Metiltransferases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Ensaios de Triagem em Larga Escala/métodos , Extratos Celulares , Linhagem Celular , DNA (Citosina-5-)-Metiltransferase 1 , Metilação de DNA/efeitos dos fármacos , Dimetil Sulfóxido , Humanos , Solventes , Trítio
15.
Phytochemistry ; 94: 184-91, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23618620

RESUMO

Six dichapetalins named dichapetalins N-S were isolated from Dichapetalum mombuttense, Dichapetalum zenkeri and Dichapetalum leucosia. They were accompanied in the same plants by the known dichapetalins A, B, C, I, L and M. The structures of the compounds were elucidated by 1D and 2D NMR experiments and mass spectrometry. They all possessed the dammarane skeleton substituted at position C-3 by a C6-C2 unit forming a 2-phenylpyran moiety. All contained a lactone ring in the side chain except dichapetalins O, Q and R, in which this ring was replaced by a lactol. Dichapetalin Q and R were also the first dichapetalins bearing a tertiary methyl and a double bond instead of the cyclopropane of the dammaranes. All these compounds were assayed against cancer cell lines HCT116 and WM 266-4 and displayed cytotoxic and anti-proliferative activities in the 10(-6) to 10(-8)M range.


Assuntos
Antineoplásicos Fitogênicos/química , Magnoliopsida/química , Extratos Vegetais/química , Raízes de Plantas/química , Antineoplásicos Fitogênicos/isolamento & purificação , Antineoplásicos Fitogênicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Células HCT116 , Células HL-60 , Compostos Heterocíclicos de 4 ou mais Anéis/química , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Humanos , Espectroscopia de Ressonância Magnética/métodos , Magnoliopsida/classificação , Estrutura Molecular , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Especificidade da Espécie , Compostos de Espiro/química , Compostos de Espiro/farmacologia , Relação Estrutura-Atividade
16.
Biochimie ; 94(11): 2280-96, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22967704

RESUMO

This review presents the different human DNA methyltransferases (DNMTs), their biological roles, their mechanisms of action and their role in cancer. The description of assays for detecting DNMT inhibitors (DNMTi) follows. The different known DNMTi are reported along with their advantages, drawbacks and clinical trials. A discussion on the features of the future DNMT inhibitors will conclude this review.


Assuntos
Metilação de DNA/efeitos dos fármacos , Neoplasias/genética , Animais , DNA (Citosina-5-)-Metiltransferases/antagonistas & inibidores , DNA (Citosina-5-)-Metiltransferases/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia
17.
BMC Cancer ; 12: 15, 2012 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-22244109

RESUMO

BACKGROUND: The multicellular tumor spheroid (MCTS) is an in vitro model associating malignant-cell microenvironment and 3D organization as currently observed in avascular tumors. METHODS: In order to evaluate the relevance of this model for pre-clinical studies of drug combinations, we analyzed the effect of gemcitabine alone and in combination with the CHIR-124 CHK1 inhibitor in a Capan-2 pancreatic cell MCTS model. RESULTS: Compared to monolayer cultures, Capan-2 MCTS exhibited resistance to gemcitabine cytotoxic effect. This resistance was amplified in EGF-deprived quiescent spheroid suggesting that quiescent cells are playing a role in gemcitabine multicellular resistance. After a prolonged incubation with gemcitabine, DNA damages and massive apoptosis were observed throughout the spheroid while cell cycle arrest was restricted to the outer cell layer, indicating that gemcitabine-induced apoptosis is directly correlated to DNA damages. The combination of gemcitabine and CHIR-124 in this MCTS model, enhanced the sensitivity to the gemcitabine antiproliferative effect in correlation with an increase in DNA damage and apoptosis. CONCLUSIONS: These results demonstrate that our pancreatic MCTS model, suitable for both screening and imaging analysis, is a valuable advanced tool for evaluating the spatio-temporal effect of drugs and drug combinations in a chemoresistant and microenvironment-depending tumor model.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Desoxicitidina/análogos & derivados , Neoplasias Pancreáticas/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Quinolinas/farmacologia , Quinuclidinas/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma Ductal Pancreático/patologia , Proliferação de Células/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Desoxicitidina/farmacologia , Resistencia a Medicamentos Antineoplásicos/fisiologia , Humanos , Modelos Biológicos , Neoplasias Pancreáticas/patologia , Esferoides Celulares/efeitos dos fármacos , Células Tumorais Cultivadas , Microambiente Tumoral , Gencitabina
18.
J Nat Prod ; 75(1): 34-47, 2012 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-22168134

RESUMO

Thirty new cycloartane derivatives (1-3, 5-12, 14-32) have been isolated from the leaves of Neoboutonia melleri. Their novelty stems from the loss of one of the C-4 methyl groups (1-3, 5-12, 14-25, and 32) and from the presence of an "extra" carbon atom in the side chain (1-3, 5-12, 14-20, 26-29, and 30-32). Furthermore, compound 32 possesses a rare triterpene skeleton with the cyclopropane ring fused onto C-1 and C-10, instead of C-9 and C-10. The structures were determined by spectrometric means, chemical correlations, and X-ray crystallography of derivative 1c. The substitution pattern in ring A, with a cyclopropyl ring conjugated with an α,ß-unsaturated carbonyl moiety, confers to the molecule a particular reactivity, giving rise to a formal inversion of the stereochemistry of the cyclopropane ring under UV irradiation. These compounds showed an interesting level of activity on the proteasome pathway, thus motivating their evaluation as possible anticancer agents. The large number of isolated compounds permitted a structure-activity relationship analysis, which showed that the presence of the two enone functions was a requirement for the activity.


Assuntos
Euphorbiaceae/química , Inibidores de Proteassoma , Triterpenos/isolamento & purificação , Triterpenos/farmacologia , Camarões , Estrutura Molecular , Folhas de Planta/química , Caules de Planta/química , Relação Estrutura-Atividade , Triterpenos/química
19.
Bioorg Med Chem ; 20(2): 819-31, 2012 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-22206869

RESUMO

The interesting pharmacological properties of neoboutomellerones 1 and 2 were the basis for the assembly of a small library of analogues consisting of natural products isolated from the plant Neoboutonia melleri and of semisynthetic derivatives. As the two enone systems (C23-C24a and C1-C3) and the two hydroxyls groups (C22 and C26) of neoboutomellerones are required for activity, modifications were focused on these functional groups. Biological evaluation by using a cellular assay for proteasome activity provided clues regarding the mechanism of action of these natural products and synthetic derivatives. Certain neoboutomellerone derivatives inhibited the proliferation of human WM-266-4 melanoma tumor cells at submicromolar concentration and warrant evaluation as anticancer agents.


Assuntos
Antineoplásicos/síntese química , Produtos Biológicos/química , Inibidores de Proteassoma , Triterpenos/síntese química , Ubiquitina/antagonistas & inibidores , Antineoplásicos/química , Antineoplásicos/toxicidade , Linhagem Celular Tumoral , Euphorbiaceae/química , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Transdução de Sinais/efeitos dos fármacos , Triterpenos/química , Triterpenos/toxicidade , Ubiquitina/metabolismo
20.
J Nat Prod ; 72(10): 1804-15, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19761234

RESUMO

Eighteen new meroterpene derivatives, dichrostachines A-R (1-18), have been isolated from the root and stem barks of Dichrostachys cinerea, and their structures determined by spectroscopic means and molecular modeling. From a biosynthetic standpoint these compounds arise from a Diels-Alder reaction between a labdane diene of the raimonol type and a flavonoid B-ring-derived quinone. The hypothesis was tested by the partial synthesis of similar compounds by simply mixing methyl communate and a synthetic flavonoid quinone. The hemisynthetic compounds were shown by NMR to have configurations different from those of the natural products, thus allowing a refinement of the biosynthesis hypothesis. Most of the compounds were assayed for their ability to inhibit the enzyme protein farnesyl transferase. The most active compounds exhibited IC50 and cytotoxicity values in the 1 microM range.


Assuntos
Alquil e Aril Transferases/antagonistas & inibidores , Fabaceae/química , Plantas Medicinais/química , Terpenos/isolamento & purificação , Terpenos/farmacologia , República Democrática do Congo , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Casca de Planta/química , Terpenos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...