Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 356, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191621

RESUMO

Neurodegeneration is the primary driver of disease progression in multiple sclerosis (MS) resulting in permanent disability, creating an urgent need to discover its underlying mechanisms. Herein, we establish that dysfunction of the RNA binding protein heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) results in differential of binding to RNA targets causing alternative RNA splicing, which contributes to neurodegeneration in MS and its models. Using RNAseq of MS brains, we discovered differential expression and aberrant splicing of hnRNP A1 target RNAs involved in neuronal function and RNA homeostasis. We confirmed this in vivo in experimental autoimmune encephalomyelitis employing CLIPseq specific for hnRNP A1, where hnRNP A1 differentially binds and regulates RNA, including aberrantly spliced targets identified in human samples. Additionally, dysfunctional hnRNP A1 expression in neurons caused neurite loss and identical changes in splicing, corroborating hnRNP A1 dysfunction as a cause of neurodegeneration. Collectively, these data indicate hnRNP A1 dysfunction causes altered neuronal RNA splicing, resulting in neurodegeneration in MS.


Assuntos
Ribonucleoproteína Nuclear Heterogênea A1 , Esclerose Múltipla , Humanos , Processamento Alternativo , Ribonucleoproteína Nuclear Heterogênea A1/genética , Esclerose Múltipla/genética , RNA , Splicing de RNA/genética
3.
Artigo em Inglês | MEDLINE | ID: mdl-26795672

RESUMO

Environmental temperature modulates thyroid hormone (TH)-dependent metamorphosis in some amphibian species. The North American bullfrog--Rana (Lithobates) catesbeiana - tadpole is naturally adapted to a wide range of temperatures over multiple seasons. Cold temperatures delay while warmer temperatures accelerate metamorphosis. Exogenous TH exposure of premetamorphic tadpoles results in a rapid precocious induction of metamorphosis at warm temperatures (20-25 °C). The same exposure at cold temperatures (4-5 °C) does not elicit an overt metamorphic response. However, a molecular memory of TH exposure is established such that cold, TH-exposed tadpoles returned to permissive warm temperatures will rapidly execute TH-induced genetic programs. Previous mRNA profiling has identified TH-regulated transcription factors encoded by thra, thrb, thibz, klf9, and cebp1 as components of the molecular memory after one week post-exposure. However, a further hierarchy may exist within the initiation phase since many gene transcripts demonstrated tissue-specific patterns. Whether the molecular memory is organ autonomous or requires additional modulating factors is unknown. Herein we examine tail fin and back skin and determine that thibz is the only transcript that is TH-responsive after 2 days post-exposure at low temperature in both tissues in the intact animal. In back skin, cebp1 is also TH-responsive under these conditions. Serum-free tail fin organ culture (C-Fin) reveals that the thibz response is organ autonomous whereas cultured back skin (C-Skin) results suggest that thibz and cebp1 require an additional factor for induction from elsewhere within the intact animal. Subsequent investigations are now possible to identify endogenous factors that modulate the molecular memory in intact animals.


Assuntos
Temperatura Baixa , Metamorfose Biológica , Ranidae/crescimento & desenvolvimento , Ranidae/genética , Hormônios Tireóideos/metabolismo , Animais , Larva , RNA Mensageiro/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...