Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 269: 115800, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38061082

RESUMO

Necrophagous flies may be effective bioindicators of chemical substances within polluted locations, as they are sensitive to environmental changes, have large populations, and thrive in a single location over their lifespan. Diversity and abundance of necrophagous flies were determined at livestock farms contaminated with potentially toxic elements (PTEs) in Tak Province and Nakhon Sawan Province, Thailand. Substantial soil zinc (Zn) concentrations (> 1100 mg kg-1) were detected at a cattle farm at Khaothong, Nakhon Sawan Province, and soil cadmium (Cd) values were significantly elevated (> 3 mg kg-1) at a cattle farm in Pha De, Tak Province. Anthropogenic inputs including Zn mining, domestic wastewater, and certain materials used in local agriculture were point sources of PTEs at the livestock farms in the Pha De and Khaothong subdistricts. Lower temperatures and humidity during the rainy season may have resulted in increased numbers of necrophagous flies, which was 1.5 times greater compared to the dry season. However, the dry season exhibited a higher PTE buildup in fly tissue. The order of important value index (IVI) values of the necrophagous flies were: Chrysomya megacephala (56.80), Musca domestica (27.21), C. rufifacies (25.40) and Sarcophaga spp. (17.54), respectively. These necrophagous flies may play a significant role in PTE-contaminated ecosystems based on their high IVI values, suggesting that they could be used as bioindicators of PTEs. Principal component analysis (PCA) results for necrophagous flies associated with each sampling site during the dry season were consistent with flies having substantial IVI values. Musca domestica and C. megacephala of both sexes displayed substantial correlations with Cr, Al, and Mn, while females of Sarcophaga spp. displayed strong associations with Cd. At the cattle farm in Khaothong, males of M. domestica showed a significant relationship with Zn, Cu, Pb, and Ni. When considering PTE accumulation capacity in flies commonly found at field sites, C. megacephala and M. domestica are the most suitable bioindicators of PTEs. This study confirms that necrophagous flies serve as reliable bioindicators of PTE pollution.


Assuntos
Dípteros , Moscas Domésticas , Metais Pesados , Poluentes do Solo , Masculino , Feminino , Animais , Bovinos , Zinco/análise , Cádmio/análise , Ecossistema , Biomarcadores Ambientais , Tailândia , Solo/química , Monitoramento Ambiental/métodos , Metais Pesados/análise , Medição de Risco , Poluentes do Solo/análise
2.
Environ Sci Pollut Res Int ; 28(26): 35157-35170, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33666846

RESUMO

Cadmium (Cd) and zinc (Zn) accumulation and uptake ability have been investigated in three ornamental monocot plants (Heliconia psittacorum x H. spathocircinata, Echinodorus cordifolius, and Pontederia cordata) grown in hydroponic systems. All study plants in the highest heavy metal treatments were found to be excluders for Cd and Zn with translocation factor values < 1 and bioconcentration factor (BCF) values > 100. The highest Cd and Zn accumulations were found in roots of E. cordifolius (4766.6 mg Zn kg-1 and 6141.6 mg Cd kg-1), followed by H. psittacorum x H. spathocircinata (4313.5 mg Zn kg-1) and P. cordata (3673.3 mg Cd kg-1), respectively, whereas shoots had lower performances. However, P. cordata had the lowest dry biomass production compared to the other two plant species in this study. As a result of dilution effects, heavy metal accumulation for all study plants was lower in the combined heavy metal treatments than in solely Cd and Zn only treatments. At the end of experiments, the highest uptakes of Cd and Zn were found in H. psittacorum x H. spathocircinata (62.1% Zn2+ from 10 mg Zn L-1 solution) and E. cordifolius (27.3% Cd2+ from 2 mg Cd L-1 solution). Low percentage metal uptakes were found in P. cordata; therefore, E. cordifolius and H. psittacorum x H. spathocircinata are clearly better suited for removing Cd and/or Zn from contaminated waters and hydroponic systems.


Assuntos
Cádmio , Poluentes do Solo , Biodegradação Ambiental , Hidroponia , Raízes de Plantas/química , Poluentes do Solo/análise , Zinco
3.
Sci Total Environ ; 747: 141133, 2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-32768771

RESUMO

Understanding the proximate factors and mechanisms driving primary production in manmade reservoirs is crucial because such production can translate into added fish yields that provide people with food and livelihoods. Furthermore, reservoir fish production could potentially compensate for the loss of fish yields due to habitat fragmentation and alterations caused by damming and impoundment. We monitored primary production, identified environmental factors responsible for its variability, and examined the relationship between primary production and fish production in nine large water bodies of the Lower Mekong Basin for 2 years. The estimated primary production ranged from 40 to 302 g C/m2/y and was generally greater in the wet season than in the dry season. Linear mixed-effects modelling identified the concentration of dissolved inorganic carbon as a significant fixed-effect variable regulating primary production, after variability due to random and fixed effects of water body and seasonality, respectively, were taken into account. Fish yields marginally increased with increasing primary production across the water bodies, with the estimated energy transfer efficiency ranging from 0.004 to 0.009. Dissolved inorganic carbon was partly determined by the lithological composition of the water body catchment, suggesting that the geographic locations of proposed dams determine the magnitude of primary production and hence future fish production.


Assuntos
Lagos , Rios , Animais , Carbono , Ecossistema , Peixes
4.
PLoS One ; 12(12): e0189609, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29272288

RESUMO

In the face of plans for increased construction of dams and reservoirs in the Mekong River Basin, it is critically important to better understand the primary-producer community of phytoplankton, especially the warm-water cyanobacteria. This is because these algae can serve as the primary source of carbon for higher trophic levels, including fishes, but can also form harmful blooms, threatening local fisheries and environmental and human health. We monitored the dynamics of three cyanobacteria-Synechococcus spp., Microcystis aeruginosa, and Dolichospermum spp.-for two years in nine large lakes and reservoirs in the Mekong River Basin. The densities of these algae were largely system-specific such that their abundance was uniquely determined within individual water bodies. However, after accounting for the system-specific effect, we found that cell densities of Synechococcus spp., M. aeruginosa, and Dolichospermum spp. varied in response to changes in photosynthetically active radiation (PAR), total nitrogen, and water level, respectively. Because both PAR and water level tend to fluctuate concordantly over a wide geographic area, Synechococcus spp., and to a lesser extent Dolichospermum spp., varied synchronously among the water bodies. Sustaining the production of pico-sized primary producers while preventing harmful algal blooms will be a key management goal for the proposed reservoirs in the Mekong Basin.


Assuntos
Proliferação Nociva de Algas , Rios/microbiologia , Sudeste Asiático , Cianobactérias/classificação , Cianobactérias/genética , Cianobactérias/isolamento & purificação , Cianobactérias/fisiologia , DNA Bacteriano/isolamento & purificação , Fotossíntese , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...