Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Front Neurosci ; 18: 1340345, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38445254

RESUMO

The study of brain connectivity has been a cornerstone in understanding the complexities of neurological and psychiatric disorders. It has provided invaluable insights into the functional architecture of the brain and how it is perturbed in disorders. However, a persistent challenge has been achieving the proper spatial resolution, and developing computational algorithms to address biological questions at the multi-cellular level, a scale often referred to as the mesoscale. Historically, neuroimaging studies of brain connectivity have predominantly focused on the macroscale, providing insights into inter-regional brain connections but often falling short of resolving the intricacies of neural circuitry at the cellular or mesoscale level. This limitation has hindered our ability to fully comprehend the underlying mechanisms of neurological and psychiatric disorders and to develop targeted interventions. In light of this issue, our review manuscript seeks to bridge this critical gap by delving into the domain of mesoscale neuroimaging. We aim to provide a comprehensive overview of conditions affected by aberrant neural connections, image acquisition techniques, feature extraction, and data analysis methods that are specifically tailored to the mesoscale. We further delineate the potential of brain connectivity research to elucidate complex biological questions, with a particular focus on schizophrenia and epilepsy. This review encompasses topics such as dendritic spine quantification, single neuron morphology, and brain region connectivity. We aim to showcase the applicability and significance of mesoscale neuroimaging techniques in the field of neuroscience, highlighting their potential for gaining insights into the complexities of neurological and psychiatric disorders.

2.
Genet Mol Biol ; 37(1 Suppl): 285-93, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24764762

RESUMO

One of the major developments that resulted from the human genome sequencing projects was a better understanding of the role of non-coding RNAs (ncRNAs). NcRNAs are divided into several different categories according to size and function; however, one shared feature is that they are not translated into proteins. In this review, we will discuss relevant aspects of ncRNAs, focusing on two main types: i) microRNAs, which negatively regulate gene expression either by translational repression or target mRNA degradation, and ii) small interfering RNAs (siRNAs), which are involved in the biological process of RNA interference (RNAi). Our knowledge regarding these two types of ncRNAs has increased dramatically over the past decade, and they have a great potential to become therapeutic alternatives for a variety of human conditions.

3.
Braz. arch. biol. technol ; 55(4): 577-582, July-Aug. 2012. ilus, tab
Artigo em Inglês | LILACS | ID: lil-645410

RESUMO

The alteration of minerals in rocks and the availability of elements for plant nutrition require long periods of time, and microorganisms are thought to induce the release of potassium and phosphate from rocks. In this context, this work evaluates the role of the yeast Torulaspora globosa, isolated from the sugar cane rhizosphere, in the solubilization of potassium from alkaline ultramafic rock powder. The experiments were performed in liquid medium, with or without agitation, at 30°C with the following treatments: culture medium + alkaline ultramafic; culture medium + yeast suspension; and culture medium + yeast suspension + alkaline ultramafic. The results showed that as much as 38% of the total potassium in the rock was released in the medium with the yeast during a 15-day period of incubation. Acid production may be the mechanism by which the yeast solubilizes potassium because the total acidity increased during the sampling period. Agitation (which increased oxygen availability) resulted in approximately 20% more biosolubilization of the alkaline ultramafic rock than with the static culture. These data indicate the potential for this yeast in biosolubilization processes and biofertilizer production.

4.
Antonie Van Leeuwenhoek ; 101(3): 529-39, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22041979

RESUMO

The yeast Dekkera bruxellensis plays an important role in industrial fermentation processes, either as a contaminant or as a fermenting yeast. In this study, an analysis has been conducted of the fermentation characteristics of several industrial D. bruxellensis strains collected from distilleries from the Southeast and Northeast of Brazil, compared with Saccharomyces cerevisiae. It was found that all the strains of D. bruxellensis showed a lower fermentative capacity as a result of inefficient sugar assimilation, especially sucrose, under anaerobiosis, which is called the Custer effect. In addition, most of the sugar consumed by D. bruxellensis seemed to be used for biomass production, as was observed by the increase of its cell population during the fermentation recycles. In mixed populations, the surplus of D. bruxellensis over S. cerevisiae population could not be attributed to organic acid production by the first yeast, as previously suggested. Moreover, both yeast species showed similar sensitivity to lactic and acetic acids and were equally resistant to ethanol, when added exogenously to the fermentation medium. Thus, the effects that lead to the employment of D. bruxellensis in an industrial process and its effects on the production of ethanol are multivariate. The difficulty of using this yeast for ethanol production is that it requires the elimination of the Custer effect to allow an increase in the assimilation of sugar under anaerobic conditions.


Assuntos
Dekkera/fisiologia , Microbiologia Industrial/métodos , Micologia/métodos , Saccharomyces cerevisiae/fisiologia , Ácidos/metabolismo , Anaerobiose , Biocombustíveis , Biomassa , Brasil , Carboidratos , Técnicas de Cocultura , Meios de Cultura , Dekkera/isolamento & purificação , Etanol/metabolismo , Fermentação , Saccharum/metabolismo
5.
J. epilepsy clin. neurophysiol ; 18(2): 57-59, 2012.
Artigo em Inglês | LILACS | ID: lil-658979

RESUMO

BACKGROUND: MicroRNAs (miRNAs) are small RNA molecules (21-24 nt) that negatively regulate gene expression, either by repression of translation or by degradation of messenger RNA. These molecules are involved in many important processes including cell differentiation, neurogenesis, formation of nervous system and others. Mesial temporal lobe epilepsy and epilepsy caused by cortical dysgenesis are among the leading causes of drug resistant epilepsy. OBJECTIVES: The objectives of this study were to characterize the expression profile of miRNAs and to investigate their regulation in mesial temporal lobe epilepsy (MTL) and in focal cortical dysplasias (FCDs). METHODS: Total RNA was extracted from hippocampal and neocortical tissue, maintained in paraffin or fresh-frozen, from patients who underwent surgery for seizure control. For comparison we used tissue obtained from autopsy. RNA was extracted and used in real time PCR reactions (157 miRNAs analyzed) or microarray chips (847 miRNAs analyzed). RESULTS: Bioinformatics analyzes identified three miRNAs with expression significantly different in patients with MTLE: let-7d, miR-29b and miR-30d; while in patients with FCDs we found 23 microRNAs differentially expressed. In addition, we found that different pathological forms of had different molecular signatures. CONCLUSIONS: The possible genes regulated by miRNAs with differential expression in tissue with mesial temporal sclerosis (MTS) are mainly related to neurogenesis and apoptosis. While in DCFs they were predominantly related to cell proliferation and migration. Our results demonstrate the importance of miRNA regulation the in molecular processes that lead to the lesions present in the MTS and the FCDs.


INTRODUÇÃO: MicroRNAs (miRNAs) são pequenas moléculas de RNA (21-24 nt) que regulam negativamente a expressão gênica, seja pela repressão da tradução ou pela degradação do RNA mensageiro. Essas moléculas estão envolvidas em muitos processos importantes incluindo diferenciação celular, neurogênese, formação do sistema nervoso entre outras. A epilepsia de lobo temporal mesial e as epilepsias causadas por disgenesias corticias estão entre as principais causas de refratariedade ao tratamento medicamentos nas epilepsias. OBJETIVOS: Os objetivos desse trabalho foram elucidar o perfil de expressão dos miRNAs e investigar a regulação dos mesmos na epilepsia de lobo temporal mesial (ELTM) e nas displasias corticais focais (DCFs). MÉTODOS: RNA total foi extraído de tecidos de hipocampo e de neocórtex, tanto congelados fresco como em parafina, de pacientes que se submeteram a cirurgia para controle das crises. Para comparação utilizamos tecidos equivalentes provindos de autópsia. Para a análise da expressão dos miRNAs, o RNA extraído foi utilizado em reações de PCR em tempo real (157 miRNAs analisados) ou em chips de microarranjos (847 miRNAs analisados). RESULTADOS: Análises de bioinformática identificaram três miRNAs com expressão significantemente alterada em pacientes com ELTM: let-7d, miR-29b e miR-30d; enquanto nos pacientes com DCFs foram encontrados 23 microRNAs diferencialmente expressos, sendo que o padrão de expressão foi diferente em diferentes formas histopatológicas de DCFs. CONCLUSÕES: Os possíveis genes regulados pelos miRNAs com expressão alterada nos tecidos com esclerose mesial temporal (EMT) estão relacionados principalmente com neurogênese e apoptose. Enquanto que nas DCFs estes estão predominantemente relacionados à proliferação e migração celular. Nossos resultados demonstram a relevância da regulação por miRNAs nos processos moleculares que culminam com a formação das lesões presentes na EMT e nas DCFs. A complexidade dessa regulação começa agora a ser desvendada e pode resultar não só na elucidação dos processos biológicos envolvidos, como também na identificação de biomarcadores de potencial uso clínico nas epilepsias.


Assuntos
Humanos , MicroRNAs , Epilepsia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...