Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Psychon Bull Rev ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38689188

RESUMO

While the neural bases of the earliest stages of speech categorization have been widely explored using neural decoding methods, there is still a lack of consensus on questions as basic as how wordforms are represented and in what way this word-level representation influences downstream processing in the brain. Isolating and localizing the neural representations of wordform is challenging because spoken words activate a variety of representations (e.g., segmental, semantic, articulatory) in addition to form-based representations. We addressed these challenges through a novel integrated neural decoding and effective connectivity design using region of interest (ROI)-based, source-reconstructed magnetoencephalography/electroencephalography (MEG/EEG) data collected during a lexical decision task. To identify wordform representations, we trained classifiers on words and nonwords from different phonological neighborhoods and then tested the classifiers' ability to discriminate between untrained target words that overlapped phonologically with the trained items. Training with word neighbors supported significantly better decoding than training with nonword neighbors in the period immediately following target presentation. Decoding regions included mostly right hemisphere regions in the posterior temporal lobe implicated in phonetic and lexical representation. Additionally, neighbors that aligned with target word beginnings (critical for word recognition) supported decoding, but equivalent phonological overlap with word codas did not, suggesting lexical mediation. Effective connectivity analyses showed a rich pattern of interaction between ROIs that support decoding based on training with lexical neighbors, especially driven by right posterior middle temporal gyrus. Collectively, these results evidence functional representation of wordforms in temporal lobes isolated from phonemic or semantic representations.

2.
bioRxiv ; 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38076846

RESUMO

Human cognitive and linguistic generativity depends on the ability to identify abstract relationships between perceptually dissimilar items. Marcus et al. (1999) found that human infants can rapidly discover and generalize patterns of syllable repetition (reduplication) that depend on the abstract property of identity, but simple recurrent neural networks (SRNs) could not. They interpreted these results as evidence that purely associative neural network models provide an inadequate framework for characterizing the fundamental generativity of human cognition. Here, we present a series of deep long short-term memory (LSTM) models that identify abstract syllable repetition patterns and words based on training with cochleagrams that represent auditory stimuli. We demonstrate that models trained to identify individual syllable trigram words and models trained to identify reduplication patterns discover representations that support classification of abstract repetition patterns. Simulations examined the effects of training categories (words vs. patterns) and pretraining to identify syllables, on the development of hidden node representations that support repetition pattern discrimination. Representational similarity analyses (RSA) comparing patterns of regional brain activity based on MRI-constrained MEG/EEG data to patterns of hidden node activation elicited by the same stimuli showed a significant correlation between brain activity localized in primarily posterior temporal regions and representations discovered by the models. These results suggest that associative mechanisms operating over discoverable representations that capture abstract stimulus properties account for a critical example of human cognitive generativity.

3.
bioRxiv ; 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37503242

RESUMO

While the neural bases of the earliest stages of speech categorization have been widely explored using neural decoding methods, there is still a lack of consensus on questions as basic as how wordforms are represented and in what way this word-level representation influences downstream processing in the brain. Isolating and localizing the neural representations of wordform is challenging because spoken words evoke activation of a variety of representations (e.g., segmental, semantic, articulatory) in addition to form-based representations. We addressed these challenges through a novel integrated neural decoding and effective connectivity design using region of interest (ROI)-based, source reconstructed magnetoencephalography/electroencephalography (MEG/EEG) data collected during a lexical decision task. To localize wordform representations, we trained classifiers on words and nonwords from different phonological neighborhoods and then tested the classifiers' ability to discriminate between untrained target words that overlapped phonologically with the trained items. Training with either word or nonword neighbors supported decoding in many brain regions during an early analysis window (100-400 ms) reflecting primarily incremental phonological processing. Training with word neighbors, but not nonword neighbors, supported decoding in a bilateral set of temporal lobe ROIs, in a later time window (400-600 ms) reflecting activation related to word recognition. These ROIs included bilateral posterior temporal regions implicated in wordform representation. Effective connectivity analyses among regions within this subset indicated that word-evoked activity influenced the decoding accuracy more than nonword-evoked activity did. Taken together, these results evidence functional representation of wordforms in bilateral temporal lobes isolated from phonemic or semantic representations.

4.
Lang Cogn Neurosci ; 38(6): 765-778, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37332658

RESUMO

Generativity, the ability to create and evaluate novel constructions, is a fundamental property of human language and cognition. The productivity of generative processes is determined by the scope of the representations they engage. Here we examine the neural representation of reduplication, a productive phonological process that can create novel forms through patterned syllable copying (e.g. ba-mih → ba-ba-mih, ba-mih-mih, or ba-mih-ba). Using MRI-constrained source estimates of combined MEG/EEG data collected during an auditory artificial grammar task, we identified localized cortical activity associated with syllable reduplication pattern contrasts in novel trisyllabic nonwords. Neural decoding analyses identified a set of predominantly right hemisphere temporal lobe regions whose activity reliably discriminated reduplication patterns evoked by untrained, novel stimuli. Effective connectivity analyses suggested that sensitivity to abstracted reduplication patterns was propagated between these temporal regions. These results suggest that localized temporal lobe activity patterns function as abstract representations that support linguistic generativity.

5.
Front Artif Intell ; 6: 1062230, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37051161

RESUMO

Introduction: The notion of a single localized store of word representations has become increasingly less plausible as evidence has accumulated for the widely distributed neural representation of wordform grounded in motor, perceptual, and conceptual processes. Here, we attempt to combine machine learning methods and neurobiological frameworks to propose a computational model of brain systems potentially responsible for wordform representation. We tested the hypothesis that the functional specialization of word representation in the brain is driven partly by computational optimization. This hypothesis directly addresses the unique problem of mapping sound and articulation vs. mapping sound and meaning. Results: We found that artificial neural networks trained on the mapping between sound and articulation performed poorly in recognizing the mapping between sound and meaning and vice versa. Moreover, a network trained on both tasks simultaneously could not discover the features required for efficient mapping between sound and higher-level cognitive states compared to the other two models. Furthermore, these networks developed internal representations reflecting specialized task-optimized functions without explicit training. Discussion: Together, these findings demonstrate that different task-directed representations lead to more focused responses and better performance of a machine or algorithm and, hypothetically, the brain. Thus, we imply that the functional specialization of word representation mirrors a computational optimization strategy given the nature of the tasks that the human brain faces.

6.
Cognition ; 230: 105322, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36370613

RESUMO

Acceptability judgments are a primary source of evidence in formal linguistic research. Within the generative linguistic tradition, these judgments are attributed to evaluation of novel forms based on implicit knowledge of rules or constraints governing well-formedness. In the domain of phonological acceptability judgments, other factors including ease of articulation and similarity to known forms have been hypothesized to influence evaluation. We used data-driven neural techniques to identify the relative contributions of these factors. Granger causality analysis of magnetic resonance imaging (MRI)-constrained magnetoencephalography (MEG) and electroencephalography (EEG) data revealed patterns of interaction between brain regions that support explicit judgments of the phonological acceptability of spoken nonwords. Comparisons of data obtained with nonwords that varied in terms of onset consonant cluster attestation and acceptability revealed different cortical regions and effective connectivity patterns associated with phonological acceptability judgments. Attested forms produced stronger influences of brain regions implicated in lexical representation and sensorimotor simulation on acoustic-phonetic regions, whereas unattested forms produced stronger influence of phonological control mechanisms on acoustic-phonetic processing. Unacceptable forms produced widespread patterns of interaction consistent with attempted search or repair. Together, these results suggest that speakers' phonological acceptability judgments reflect lexical and sensorimotor factors.


Assuntos
Julgamento , Fonética , Humanos , Magnetoencefalografia , Mapeamento Encefálico , Eletroencefalografia
7.
Front Psychol ; 12: 590155, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33776832

RESUMO

Processes governing the creation, perception and production of spoken words are sensitive to the patterns of speech sounds in the language user's lexicon. Generative linguistic theory suggests that listeners infer constraints on possible sound patterning from the lexicon and apply these constraints to all aspects of word use. In contrast, emergentist accounts suggest that these phonotactic constraints are a product of interactive associative mapping with items in the lexicon. To determine the degree to which phonotactic constraints are lexically mediated, we observed the effects of learning new words that violate English phonotactic constraints (e.g., srigin) on phonotactic perceptual repair processes in nonword consonant-consonant-vowel (CCV) stimuli (e.g., /sre/). Subjects who learned such words were less likely to "repair" illegal onset clusters (/sr/) and report them as legal ones (/∫r/). Effective connectivity analyses of MRI-constrained reconstructions of simultaneously collected magnetoencephalography (MEG) and EEG data showed that these behavioral shifts were accompanied by changes in the strength of influences of lexical areas on acoustic-phonetic areas. These results strengthen the interpretation of previous results suggesting that phonotactic constraints on perception are produced by top-down lexical influences on speech processing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...