Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Early Hum Dev ; 194: 106047, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38851106

RESUMO

BACKGROUND: Neonatal chest-Xray (CXR)s are commonly performed as a first line investigation for the evaluation of respiratory complications. Although lung area derived from CXRs correlates well with functional assessments of the neonatal lung, it is not currently utilised in clinical practice, partly due to the lack of reference ranges for CXR-derived lung area in healthy neonates. Advanced MR techniques now enable direct evaluation of both fetal pulmonary volume and area. This study therefore aims to generate reference ranges for pulmonary volume and area in uncomplicated pregnancies, evaluate the correlation between prenatal pulmonary volume and area, as well as to assess the agreement between antenatal MRI-derived and neonatal CXR-derived pulmonary area in a cohort of fetuses that delivered shortly after the antenatal MRI investigation. METHODS: Fetal MRI datasets were retrospectively analysed from uncomplicated term pregnancies and a preterm cohort that delivered within 72 h of the fetal MRI. All examinations included T2 weighted single-shot turbo spin echo images in multiple planes. In-house pipelines were applied to correct for fetal motion using deformable slice-to-volume reconstruction. An MRI-derived lung area was manually segmented from the average intensity projection (AIP) images generated. Postnatal lung area in the preterm cohort was measured from neonatal CXRs within 24 h of delivery. Pearson correlation coefficient was used to correlate MRI-derived lung volume and area. A two-way absolute agreement was performed between the MRI-derived AIP lung area and CXR-derived lung area. RESULTS: Datasets from 180 controls and 10 preterm fetuses were suitable for analysis. Mean gestational age at MRI was 28.6 ± 4.2 weeks for controls and 28.7 ± 2.7 weeks for preterm neonates. MRI-derived lung area correlated strongly with lung volumes (p < 0.001). MRI-derived lung area had good agreement with the neonatal CXR-derived lung area in the preterm cohort [both lungs = 0.982]. CONCLUSION: MRI-derived pulmonary area correlates well with absolute pulmonary volume and there is good correlation between MRI-derived pulmonary area and postnatal CXR-derived lung area when delivery occurs within a few days of the MRI examination. This may indicate that fetal MRI derived lung area may prove to be useful reference ranges for pulmonary areas derived from CXRs obtained in the perinatal period.


Assuntos
Pulmão , Imageamento por Ressonância Magnética , Humanos , Pulmão/diagnóstico por imagem , Pulmão/embriologia , Imageamento por Ressonância Magnética/métodos , Feminino , Gravidez , Recém-Nascido , Medidas de Volume Pulmonar/métodos , Estudos Retrospectivos
2.
Eur J Obstet Gynecol Reprod Biol ; 293: 106-114, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38141484

RESUMO

OBJECTIVES: To compare mean pulmonary T2* values and pulmonary volumes in fetuses that subsequently spontaneously delivered before 32 weeks with a control cohort with comparable gestational ages and to assess the value of mean pulmonary T2* as a predictor of preterm birth < 32 weeks' gestation. METHODS: MRI datasets scanned at similar gestational ages were selected from fetuses who spontaneously delivered < 32 weeks of gestation and a control group who subsequently delivered at term with no complications. All women underwent a fetal MRI on a 3 T MRI imaging system. Sequences included T2-weighted single shot fast spin echo and T2* sequences, using gradient echo single shot echo planar sequencing of the fetal thorax. Motion correction was performed using slice-to-volume reconstruction and T2* maps generated using in-house pipelines. Lungs were manually segmented and volumes and mean T2* values calculated for both lungs combined and left and right lung separately. Linear regression was used to compare values between the preterm and control cohorts accounting for the effects of gestation. Receiver operating curves were generated for mean T2* values and pulmonary volume as predictors of preterm birth < 32 weeks' gestation. RESULTS: Datasets from twenty-eight preterm and 74 control fetuses were suitable for analysis. MRI images were taken at similar fetal gestational ages (preterm cohort (mean ± SD) 24.9 ± 3.3 and control cohort (mean ± SD) 26.5 ± 3.0). Mean gestational age at delivery was 26.4 ± 3.3 for the preterm group and 39.9 ± 1.3 for the control group. Mean pulmonary T2* values remained constant with increasing gestational age while pulmonary volumes increased. Both T2* and pulmonary volumes were lower in the preterm group than in the control group for all parameters (both combined, left, and right lung (p < 0.001 in all cases). Adjusted for gestational age, pulmonary volumes and mean T2* values were good predictors of premature delivery in fetuses < 32 weeks (area under the curve of 0.828 and 0.754 respectively). CONCLUSION: These findings indicate that mean pulmonary T2* values and volumes were lower in fetuses that subsequently delivered very preterm. This may suggest potentially altered oxygenation and indicate that pulmonary morbidity associated with prematurity has an antenatal antecedent. Future work should explore these results correlating antenatal findings with long term pulmonary outcomes.


Assuntos
Lactente Extremamente Prematuro , Nascimento Prematuro , Humanos , Recém-Nascido , Gravidez , Feminino , Projetos Piloto , Nascimento Prematuro/diagnóstico por imagem , Feto , Pulmão/diagnóstico por imagem , Idade Gestacional , Imageamento por Ressonância Magnética/métodos
3.
Am J Obstet Gynecol MFM ; 5(6): 100935, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36933803

RESUMO

BACKGROUND: The mainstay of assessment of the fetal lungs in clinical practice is via evaluation of pulmonary size, primarily using 2D ultrasound and more recently with anatomical magnetic resonance imaging. The emergence of advanced magnetic resonance techniques such as T2* relaxometry in combination with the latest motion correction post-processing tools now facilitates assessment of the metabolic activity or perfusion of fetal pulmonary tissue in vivo. OBJECTIVE: This study aimed to characterize normal pulmonary development using T2* relaxometry, accounting for fetal motion across gestation. METHODS: Datasets from women with uncomplicated pregnancies that delivered at term, were analyzed. All subjects had undergone T2-weighted imaging and T2* relaxometry on a Phillips 3T magnetic resonance imaging system antenatally. T2* relaxometry of the fetal thorax was performed using a gradient echo single-shot echo planar imaging sequence. Following correction for fetal motion using slice-to-volume reconstruction, T2* maps were generated using in-house pipelines. Lungs were manually segmented and mean T2* values calculated for the right and left lungs individually, and for both lungs combined. Lung volumes were generated from the segmented images, and the right and left lungs, as well as both lungs combined were assessed. RESULTS: Eighty-seven datasets were suitable for analysis. The mean gestation at scan was 29.9±4.3 weeks (range: 20.6-38.3) and mean gestation at delivery was 40±1.2 weeks (range: 37.1-42.4). Mean T2* values of the lungs increased over gestation for right and left lungs individually and for both lungs assessed together (P=.003; P=.04; P=.003, respectively). Right, left, and total lung volumes were also strongly correlated with increasing gestational age (P<.001 in all cases). CONCLUSION: This large study assessed developing lungs using T2* imaging across a wide gestational age range. Mean T2* values increased with gestational age, which may reflect increasing perfusion and metabolic requirements and alterations in tissue composition as gestation advances. In the future, evaluation of findings in fetuses with conditions known to be associated with pulmonary morbidity may lead to enhanced prognostication antenatally, consequently improving counseling and perinatal care planning.


Assuntos
Pulmão , Imageamento por Ressonância Magnética , Gravidez , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Pulmão/diagnóstico por imagem , Idade Gestacional
4.
Am J Obstet Gynecol MFM ; 4(5): 100693, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35858660

RESUMO

Antenatal diagnosis of abnormal pulmonary development has improved significantly over recent years because of progress in imaging techniques. Two-dimensional ultrasound is the mainstay of investigation of pulmonary pathology during pregnancy, providing good prognostication in conditions such as congenital diaphragmatic hernia; however, it is less validated in other high-risk groups such as those with congenital pulmonary airway malformation or preterm premature rupture of membranes. Three-dimensional assessment of lung volume and size is now possible using ultrasound or magnetic resonance imaging; however, the use of these techniques is still limited because of unpredictable fetal motion, and such tools have also been inadequately validated in high-risk populations other than those with congenital diaphragmatic hernia. The advent of advanced, functional magnetic resonance imaging techniques such as diffusion and T2* imaging, and the development of postprocessing pipelines that facilitate motion correction, have enabled not only more accurate evaluation of pulmonary size, but also assessment of tissue microstructure and perfusion. In the future, fetal magnetic resonance imaging may have an increasing role in the prognostication of pulmonary abnormalities and in monitoring current and future antenatal therapies to enhance lung development. This review aims to examine the current imaging methods available for assessment of antenatal lung development and to outline possible future directions.


Assuntos
Hérnias Diafragmáticas Congênitas , Pneumopatias , Feminino , Hérnias Diafragmáticas Congênitas/diagnóstico por imagem , Hérnias Diafragmáticas Congênitas/patologia , Humanos , Recém-Nascido , Pulmão/diagnóstico por imagem , Pneumopatias/patologia , Medidas de Volume Pulmonar/métodos , Gravidez , Diagnóstico Pré-Natal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...