Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 13(15): 10051-10067, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37006376

RESUMO

The current study presents for the first time the synthesis of a new 2:1-[α/aza]-pseudopeptide series possessing charged amino acids (i.e., lysine) and aims at studying the influences of chirality, backbone length, and the nature of the lysine side chains on the conformation of the 2:1-[α/aza]-oligomers in solution using NMR, FTIR spectroscopy and molecular dynamic calculations. The spectroscopic results emphasized the conservation of the ß-turn conformation adopted by the trimers regardless of the chirality which demonstrated a noticeable effect on the conformation of homochiral hexamer (8c) compared with the hetero-analogue (8d). The molecular dynamic calculations predicted that the chirality and the side chain of the lysine residues caused a little distortion from the classical ß-turn conformation in the case of short trimer sequences (7c and 7d), while the chirality and the backbone length exerted more distortion on the ß-turn adopted by the longer hexamer sequences (8c and 8d). The large disturbance in hexamers from classical ß-turn was attributed to increasing the flexibility and the possibility of molecules to adopt a more energetically favorable conformation stabilized by non-classical ß-turn intramolecular hydrogen bonds. Thus, alternating d- and l-lysine amino acids in the 2:1-[α/aza]-hexamer (8d) decreases the high steric hindrance between the lysine side chains, as in the homo analogue (8c), and the distortion is less recognized. Finally, short sequences of aza-pseudopeptides containing lysine residues improve CO2 separation when used as additives in Pebax® 1074 membranes. The best membrane performances were obtained with a pseudopeptidic dimer as an additive (6b'; deprotected lysine side chain), with an increase in both ideal selectivity α CO2/N2 (from 42.8 to 47.6) and CO2 permeability (from 132 to 148 Barrer) compared to the virgin Pebax® 1074 membrane.

2.
J Phys Chem B ; 126(37): 7159-7165, 2022 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-36099394

RESUMO

The electric field gradient tensor (considered here at the level of a nitrogen nucleus) can be described by two parameters: the largest element in the (X,Y,Z) principal axis system, denoted by VZZ (leading to the nuclear quadrupole coupling), and the asymmetry parameter η = (|VYY| - |VXX|)/|VZZ| with |VZZ| > |VYY| > |VXX|. The frequencies of the three nitrogen-14 nuclear quadrupole resonance (NQR) transitions depend on both parameters but, for sensitivity reasons, their determination may be especially difficult and time consuming. For a partly rigid NH grouping with a labile proton, water nuclear magnetic resonance (NMR) relaxometry curves may exhibit these three transitions (dubbed quadrupolar dips or quadrupole relaxation enhancement (QRE)), provided that the NH grouping belongs to a moiety possessing a sufficient degree of ordering. Their line shape leads to the correlation time describing mainly the motion of the NH grouping (the proton of which being in exchange with water protons), and their amplitude can be interpreted in terms of an effective NH distance. This approach is applied to a hydrogel, where separate NQR lines are observed for the different types of water existing in this system. Furthermore, the analysis of experimental data allows one to determine the nuclear quadrupole coupling in the protonated and deprotonated forms of this molecular moiety involving a labile NH grouping.


Assuntos
Prótons , Água , Hidrogéis , Espectroscopia de Ressonância Magnética , Nitrogênio/química
3.
Nanoscale ; 14(13): 4908-4921, 2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35319034

RESUMO

Over the last twenty years, low-molecular weight gelators and, in particular, peptide-based hydrogels, have drawn great attention from scientists thanks to both their inherent advantages in terms of properties and their high modularity (e.g., number and nature of the amino acids). These supramolecular hydrogels originate from specific peptide self-assembly processes that can be driven, modulated and optimized via specific chemical modifications brought to the peptide sequence. Among them, the incorporation of nucleobases, another class of biomolecules well-known for their abilities to self-assemble, has recently appeared as a new promising and burgeoning approach to finely design supramolecular hydrogels. In this minireview, we would like to highlight the interest, high potential, applications and perspectives of these innovative and emerging low-molecular weight nucleopeptide-based hydrogels.


Assuntos
Hidrogéis , Peptídeos , Sequência de Aminoácidos , Aminoácidos/química , Hidrogéis/química , Peso Molecular , Peptídeos/química
4.
Nanoscale ; 13(23): 10566-10578, 2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34100504

RESUMO

Peptide-based hydrogels are physical gels formed through specific supramolecular self-assembling processes, leading to ordered nanostructures which constitute the water entrapping scaffold of the soft material. Thanks to the inherent properties of peptides, these hydrogels are highly considered in the biomedical domain and open new horizons in terms of application in advanced therapies and biotechnologies. The use of one, and only one, native peptide to formulate a gel is by far the most reported approach to design such materials, but suffers from several limitations, including in terms of mechanical properties. To improve peptide-based hydrogels interest and give rise to innovative properties, several strategies have been proposed in the recent years, and the development of multicomponent peptide-based hydrogels appears as a promising and relevant strategy. Indeed, mixing two or more compounds to develop new materials is a much-used approach that has proven its effectiveness in a wide variety of domains, including polymers, composites and alloys. While still limited to a handful of examples, we would like to report herein on the formulation and the comprehensive study of multicomponent hybrid DNA-nucleobase/peptide-based hydrogels using a multiscale approach based on a large panel of analytical techniques (i.e., rheometry, proton relaxometry, SAXS, electronic microscopy, infrared, circular dichroism, fluorescence, Thioflavin T assays). Among the six multicomponent systems studied, the results highlight the synergistic role of the presence of the two complementary DNA-nucleobases (i.e., adenine/thymine and guanine/cytosine) on the co-assembling process from structural (e.g., morphology of the nanoobjects) to physicochemical (e.g., kinetics of formation, fluorescence properties) and mechanical (e.g., stiffness, resistance to external stress) properties. All the data confirm the relevance of the multicomponent peptide-based approach in the design of innovative hydrogels and bring another brick in the wall of the understanding of these complex and promising systems.


Assuntos
Hidrogéis , Nanoestruturas , Peptídeos , Espalhamento a Baixo Ângulo , Difração de Raios X
5.
Nanoscale ; 12(38): 19905-19917, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-32985645

RESUMO

Peptide self-assemblies have attracted intense research interest over the last few decades thanks to their implications in key biological processes (e.g., amyloid formation) and their use in biotechnological and (bio)material fields. In particular, peptide-based hydrogels have been highly considered as high potential supramolecular materials in the biomedical domain and open new horizons in terms of applications. To further understand their self-assembly mechanisms and to optimize their properties, several strategies have been proposed with the modification of the constituting amino acid chains via, per se, the introduction of d-amino acids, halogenated amino acids, pseudopeptide bonds, or other chemical moieties. In this context, we report herein on the incorporation of DNA-nucleobases into their peptide nucleic acid (PNA) forms to develop a new series of hybrid nucleopeptides. Thus, depending on the nature of the nucleobase (i.e., thymine, cytosine, adenine or guanine), the physicochemical and mechanical properties of the resulting hydrogels can be significantly improved and fine-tuned with, for instance, drastic enhancements of both the gel stiffness (up to 70-fold) and the gel resistance to external stress (up to 40-fold), and the generation of both thermo-reversible and uncommon red-edge excitation shift (REES) properties. To decipher the actual role of each PNA moiety in the self-assembly processes, the induced modifications from the molecular to the macroscopic scales are studied thanks to the multiscale approach based on a large panel of analytical techniques (i.e., rheology, NMR relaxometry, TEM, thioflavin T assays, FTIR, CD, fluorescence, NMR chemical shift index). Thus, such a strategy provides new opportunities to adapt and fit hydrogel properties to the intended ones and pushes back the limits of supramolecular materials.


Assuntos
Ácidos Nucleicos Peptídicos , Aminoácidos , Proteínas Amiloidogênicas , Hidrogéis , Peptídeos
6.
Metallomics ; 12(8): 1220-1229, 2020 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-32490462

RESUMO

Reactive oxygen species (ROS) are major sources of oxidative stress playing prominent roles in the development of several pathologies including cardiovascular and neurodegenerative diseases or cancers. The presence of transition biometal ions, specifically copper and iron, induces ROS formation by catalyzing the reduction of molecular oxygen to superoxide anion (O2˙-), hydrogen peroxide (H2O2) and hydroxyl (HO˙) radical. To limit ROS production and their detrimental effects, we report on the synthesis, physicochemical studies and antioxidant assays of an innovative series of synthetic pentapeptides exhibiting a dual direct/indirect mode of action, both as iron(iii)-chelators and as radical scavengers. These combined effects lead to a drastic reduction of in vitro reactive oxygen species production up to 95% for the more reactive hydroxyl radical.


Assuntos
Compostos Férricos/química , Radicais Livres/química , Peróxido de Hidrogênio/química , Espécies Reativas de Oxigênio/química , Ferro/química , Estresse Oxidativo , Superóxidos/química
7.
RSC Adv ; 10(71): 43859-43869, 2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-35519698

RESUMO

Molecular self-assembly is a fascinating process which has become an area of great interest in supramolecular chemistry, as it leads in certain cases to molecular gels. Organogels formulated from low molecular weight compounds (LMWOGs) have attracted much interest in the past decades due to their applications as new soft materials. Herein, we report on the ability of the cyclic pseudopeptide cyclo-[-(d-Phe-azaPhe-Ala)2-] (2) to self-assemble in some aromatic solvents and to form organogels driven by non-covalent forces, mainly hydrogen bonding and π-stacking interactions. Comprehensive FTIR and NMR studies emphasized that this cyclic aza-peptide adopts a ß-turn conformation at low concentration in toluene, while an equilibrium between the monomeric states (intramolecular forces) and the supramolecular structures (intra- and intermolecular forces) is established at high concentration (gel state). Rheological investigations of the organogels highlight the dependence of their stiffness (up to ∼4 kPa) and sol/gel transition temperatures (up to 100 °C) as a function of the solvent and concentration of gelator used. The formulation of fibrous structures confirmed the phenomenon of self-assembly. Finally, we found that cyclo-[-(d-Phe-azaPhe-Ala)2-] is an effective organogelator for application in phase selective gelation (PSG) of organic solvents from aqueous/organic mixtures with recovery percents up to 96%.

8.
Angew Chem Int Ed Engl ; 53(48): 13131-5, 2014 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-25258017

RESUMO

α,ß-Hybrid oligomers of varying lengths with alternating proteogenic α-amino acid and the rigid ß(2,3,3) -trisubstituted bicyclic amino acid ABOC residues were studied using both X-ray crystal and NMR solution structures. While only an 11/9 helix was obtained in the solid state regardless of the length of the oligomers, conformational polymorphism as a chain-length-dependent phenomenon was observed in solution. Consistent with DFT calculations, we established that short oligomers adopted an 11/9 helix, whereas an 18/16 helix was favored for longer oligomers in solution. A rapid interconversion between the 11/9 helix and the 18/16 helix occurred for oligomers of intermediate length.


Assuntos
Peptídeos/química , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Conformação Molecular , Estrutura Secundária de Proteína
9.
Chemistry ; 19(50): 16963-71, 2013 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-24307359

RESUMO

The combination of a non-functionalized constrained bicyclo[2.2.2]octane motif along with urea linkages allowed the formation of a highly rigid 2.5(12/14) helical system both in solution and the solid state. In this work, we aimed at developing stable and functionalized systems as promising materials for biological applications in investigating the impact of this constrained motif and its configuration on homo and heterochiral mixed-oligourea helix formation. Di-, tetra-, hexa-, and octa-oligoureas alternating the highly constrained bicyclic motif of (R) or (S) configuration with acyclic (S)-ß(3)-amino acid derivatives were constructed. Circular dichroism (CD), NMR experiments, and the X-ray crystal structure of the octamer unequivocally proved that the alternating heterochiral R/S sequences form a stable left-handed 2.5-helix in contrast to the mixed (S/S)-oligoureas, which did not adopt any defined secondary structure. We observed that the (-)-synclinal conformation around the C(α)-C(ß) bond of the acyclic residues, although sterically less favorable than the (+)-synclinal conformation, was imposed by the (R)-bicyclic amino carbamoyl (BAC) residue. This highlighted the strong ability of the BAC residue to drive helical folding in heterochiral compounds. The role of the stereochemistry of the BAC unit was assessed and a model was proposed to explain the misfolding of the S/S sequences.


Assuntos
Aminoácidos/química , Compostos Bicíclicos com Pontes/química , Octanos/química , Dicroísmo Circular , Cristalografia por Raios X , Espectroscopia de Ressonância Magnética , Conformação Molecular , Estrutura Secundária de Proteína , Soluções , Estereoisomerismo , Ureia/análogos & derivados , Ureia/química
10.
J Med Chem ; 56(14): 5964-5973, 2013 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-23822516

RESUMO

Two series of 22 and 15 atom cyclic enkephalins incorporating a diversely substituted guanidine bridge have been prepared to assess the potential effect of the bridge substitutions on their opioid activity profile. The most notable results were obtained with the shortest cyclic analogues, which showed a significant variation of their binding affinity toward µ and δ opioid receptors in relation to bridge substitution. NMR studies were performed to rationalize these data. Some small analogues were found to exist as at least one major and one minor stable forms, which could be separated by chromatography. In particular, the compounds 13 and 14 with a cyclic substituent were separated in three isomers and the basis of this multiplicity was explored by 2D NMR spectroscopy. All compounds were agonists with slight selectivity for the µ opioid receptor. Compounds 7a (thiourea bridge) and 10a (N-Me-guanidine bridge) showed nanomolar affinity toward µ receptor, the latter being the more selective for this receptor (40-fold).


Assuntos
Encefalinas/síntese química , Peptídeos Cíclicos/síntese química , Receptores Opioides mu/agonistas , Animais , Encefalinas/química , Encefalinas/metabolismo , Encefalinas/farmacologia , Guanidina , Humanos , Espectroscopia de Ressonância Magnética , Peptídeos Cíclicos/química , Peptídeos Cíclicos/metabolismo , Peptídeos Cíclicos/farmacologia , Ratos , Receptores Opioides mu/metabolismo , Relação Estrutura-Atividade , Tioureia
11.
Angew Chem Int Ed Engl ; 52(23): 6006-10, 2013 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-23619818

RESUMO

9-Helix: 4-Amino(methyl)-1,3-thiazole-5-carboxylic acids (ATCs) were synthesized as new γ-amino acid building blocks. The structures of various ATC oligomers were analyzed in solution by CD and NMR spectroscopy and in the solid state by X-ray crystallography. The ATC sequences adopted a well-defined 9-helix structure in the solid state and in aprotic and protic organic solvents as well as in aqueous solution.


Assuntos
Aminoácidos/química , Polímeros/química , Tiazóis/síntese química , Dicroísmo Circular , Modelos Moleculares , Tiazóis/química
12.
Angew Chem Int Ed Engl ; 51(45): 11267-70, 2012 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-23038643

RESUMO

BAC for more: a constrained bicyclic building block with urea linkages is an efficient combination for the formation of a highly rigid helical system. This type of bicyclic amino carbamoyl (BAC) foldamer was studied both in solution and in the solid state. A robust H-bond (dotted line) network was found between the carbonyl oxygen atoms (red) and the amino groups (dark blue) within the helix.


Assuntos
Ureia/síntese química , Compostos Bicíclicos com Pontes/química , Dicroísmo Circular , Modelos Moleculares , Conformação Molecular , Ressonância Magnética Nuclear Biomolecular , Octanos/química , Estrutura Secundária de Proteína , Ureia/análogos & derivados , Ureia/química
13.
Org Lett ; 14(4): 960-3, 2012 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-22292802

RESUMO

In order to investigate the ability of the (S)-aminobicyclo[2.2.2]octane-2-carboxylic acid 1 (H-(S)-ABOC-OH) to induce reverse turns into peptides, two model tripeptides, in which this bicyclic unit was incorporated into the second position, were synthesized and analyzed by FT-IR, CD, NMR, and X-ray studies.


Assuntos
Aminoácidos Cíclicos/química , Modelos Moleculares , Conformação Molecular
14.
Bioconjug Chem ; 21(10): 1850-4, 2010 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-20815388

RESUMO

Small oligomers of constrained dipeptide mimics have been synthesized as new vectors for intracellular delivery. They are highly internalized by cells and delivered to the lysosomes by an energy-dependent pathway. This new class of vectors referred to as cell penetrating nonpeptides (CPNP) possess the distinctive feature of being noncationic.


Assuntos
Dipeptídeos/química , Peptidomiméticos/química , Peptidomiméticos/metabolismo , Transporte Biológico , Linhagem Celular Tumoral , Humanos , Espaço Intracelular/metabolismo , Polímeros/química , Polímeros/metabolismo , Tiazepinas/química
16.
Biochemistry ; 47(48): 12710-20, 2008 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-18983169

RESUMO

The DsbD protein is essential for electron transfer from the cytoplasm to the periplasm of Gram-negative bacteria. Its N-terminal domain dispatches electrons coming from cytoplasmic thioredoxin (Trx), via its central transmembrane and C-terminal domains, to its periplasmic partners: DsbC, DsbE/CcmG, and DsbG. Previous structural studies described the latter proteins as Trx-like folds possessing a characteristic C-X-X-C motif able to generate a disulfide bond upon oxidation. The Escherichia coli nDsbD displays an immunoglobulin-like fold in which two cysteine residues (Cys103 and Cys109) allow a disulfide bond exchange with its biological partners.We have determined the structure in solution and the backbone dynamics of the C103S mutant of the N-terminal domain of DsbD from Neisseria meningitidis. Our results highlight significant structural changes concerning the beta-sheets and the local topology of the active site compared with the oxidized form of the E. coli nDsbD. The structure reveals a "cap loop" covering the active site, similar to the oxidized E. coli nDsbD X-ray structure. However, regions featuring enhanced mobility were observed both near to and distant from the active site, revealing a capacity of structural adjustments in the active site and in putative interaction areas with nDsbD biological partners. Results are discussed in terms of functional consequences.


Assuntos
Cisteína/genética , Proteínas Mutantes/química , Mutação/genética , Neisseria meningitidis/enzimologia , Oxirredutases/química , Oxirredutases/genética , Serina/genética , Domínio Catalítico , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Proteínas Mutantes/genética , Estrutura Terciária de Proteína/genética , Soluções
17.
Biochemistry ; 47(33): 8577-89, 2008 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-18651754

RESUMO

The secreted form of the PilB protein was proposed to be involved in pathogen survival fighting against the defensive host's oxidative burst. PilB protein is composed of three domains. The central and the C-terminal domains display methionine sulfoxide reductase A and B activities, respectively. The N-terminal domain, which possesses a CXXC motif, was recently shown to regenerate in vitro the reduced forms of the methionine sulfoxide reductase domains of PilB from their oxidized forms, as does the thioredoxin 1 from E. coli, via a disulfide bond exchange. The thioredoxin-like N-terminal domain belongs to the cytochrome maturation protein structural family, but it possesses a unique additional segment (99)FLHE (102) localized in a loop. This segment covers one edge of the active site in the crystal structure of the reduced form of the N-terminal domain of PilB. We have determined the solution structure and the dynamics of the N-terminal domain from Neisseria meningitidis, in its reduced and oxidized forms. The FLHE loop adopts, in both redox states, a well-defined conformation. Subtle conformational and dynamic changes upon oxidation are highlighted around the active site, as well as in the FLHE loop. The functional consequences of the cytochrome maturation protein topology and those of the presence of FLHE loop are discussed in relation to the enzymatic properties of the N-terminal domain.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Neisseria meningitidis/metabolismo , Oxirredutases/química , Oxirredutases/metabolismo , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Oxirredução , Conformação Proteica , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...