Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(7)2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37050776

RESUMO

Wearable sensing solutions have emerged as a promising paradigm for monitoring human musculoskeletal state in an unobtrusive way. To increase the deployability of these systems, considerations related to cost reduction and enhanced form factor and wearability tend to discourage the number of sensors in use. In our previous work, we provided a theoretical solution to the problem of jointly reconstructing the entire muscular-kinematic state of the upper limb, when only a limited amount of optimally retrieved sensory data are available. However, the effective implementation of these methods in a physical, under-sensorized wearable has never been attempted before. In this work, we propose to bridge this gap by presenting an under-sensorized system based on inertial measurement units (IMUs) and surface electromyography (sEMG) electrodes for the reconstruction of the upper limb musculoskeletal state, focusing on the minimization of the sensors' number. We found that, relying on two IMUs only and eight sEMG sensors, we can conjointly reconstruct all 17 degrees of freedom (five joints, twelve muscles) of the upper limb musculoskeletal state, yielding a median normalized RMS error of 8.5% on the non-measured joints and 2.5% on the non-measured muscles.


Assuntos
Extremidade Superior , Dispositivos Eletrônicos Vestíveis , Humanos , Fenômenos Biomecânicos , Movimento (Física)
2.
Sci Rep ; 12(1): 7601, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35534629

RESUMO

Characterizing post-stroke impairments in the sensorimotor control of arm and hand is essential to better understand altered mechanisms of movement generation. Herein, we used a decomposition algorithm to characterize impairments in end-effector velocity and hand grip force data collected from an instrumented functional task in 83 healthy control and 27 chronic post-stroke individuals with mild-to-moderate impairments. According to kinematic and kinetic raw data, post-stroke individuals showed reduced functional performance during all task phases. After applying the decomposition algorithm, we observed that the behavioural data from healthy controls relies on a low-dimensional representation and demonstrated that this representation is mostly preserved post-stroke. Further, it emerged that reduced functional performance post-stroke correlates to an abnormal variance distribution of the behavioural representation, except when reducing hand grip forces. This suggests that the behavioural repertoire in these post-stroke individuals is mostly preserved, thereby pointing towards therapeutic strategies that optimize movement quality and the reduction of grip forces to improve performance of daily life activities post-stroke.


Assuntos
Força da Mão , Acidente Vascular Cerebral , Braço , Mãos , Humanos , Movimento
4.
Gigascience ; 10(6)2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34143875

RESUMO

BACKGROUND: Shedding light on the neuroscientific mechanisms of human upper limb motor control, in both healthy and disease conditions (e.g., after a stroke), can help to devise effective tools for a quantitative evaluation of the impaired conditions, and to properly inform the rehabilitative process. Furthermore, the design and control of mechatronic devices can also benefit from such neuroscientific outcomes, with important implications for assistive and rehabilitation robotics and advanced human-machine interaction. To reach these goals, we believe that an exhaustive data collection on human behavior is a mandatory step. For this reason, we release U-Limb, a large, multi-modal, multi-center data collection on human upper limb movements, with the aim of fostering trans-disciplinary cross-fertilization. CONTRIBUTION: This collection of signals consists of data from 91 able-bodied and 65 post-stroke participants and is organized at 3 levels: (i) upper limb daily living activities, during which kinematic and physiological signals (electromyography, electro-encephalography, and electrocardiography) were recorded; (ii) force-kinematic behavior during precise manipulation tasks with a haptic device; and (iii) brain activity during hand control using functional magnetic resonance imaging.


Assuntos
Robótica , Reabilitação do Acidente Vascular Cerebral , Braço , Interface Háptica , Humanos , Extremidade Superior
5.
J Neural Eng ; 18(4)2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33601354

RESUMO

Objective.Brain-computer interfaces (BCIs) exploit computational features from brain signals to perform a given task. Despite recent neurophysiology and clinical findings indicating the crucial role of functional interplay between brain and cardiovascular dynamics in locomotion, heartbeat information remains to be included in common BCI systems. In this study, we exploit the multidimensional features of directional and functional interplay between electroencephalographic and heartbeat spectra to classify upper limb movements into three classes.Approach.We gathered data from 26 healthy volunteers that performed 90 movements; the data were processed using a recently proposed framework for brain-heart interplay (BHI) assessment based on synthetic physiological data generation. Extracted BHI features were employed to classify, through sequential forward selection scheme and k-nearest neighbors algorithm, among resting state and three classes of movements according to the kind of interaction with objects.Main results.The results demonstrated that the proposed brain-heart computer interface (BHCI) system could distinguish between rest and movement classes automatically with an average 90% of accuracy.Significance.Further, this study provides neurophysiology insights indicating the crucial role of functional interplay originating at the cortical level onto the heart in the upper limb neural control. The inclusion of functional BHI insights might substantially improve the neuroscientific knowledge about motor control, and this may lead to advanced BHCI systems performances.


Assuntos
Interfaces Cérebro-Computador , Encéfalo , Computadores , Eletroencefalografia/métodos , Humanos , Movimento/fisiologia , Extremidade Superior
6.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 3839-3843, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-33018838

RESUMO

Muscular spasticity represents one of the most common motor disorder associated to lesions of the Central Nervous System, such as Stroke, and affects joint mobility up to the complete prevention of skeletal muscle voluntary control. Its clinical evaluation is hence of fundamental relevance for an effective rehabilitation of the affected subjects. Standard assessment protocols are usually manually performed by humans, and hence their reliability strongly depends on the capabilities of the clinical operator performing the procedures. To overcome this limitation, one solution is the usage of mechatronic devices based on the estimation of the Tonic Stretch Reflex Threshold, which allows for a quite reliable and operator-independent evaluation. In this work, we present the design and characterization of a novel mechatronic device that targets the estimation of the Tonic Stretch Reflex Threshold at the elbow level, and, at the same time, it can potentially act as a rehabilitative system. Our device can deliver controllable torque/velocity stimulation and record functional parameters of the musculo-skeletal system (joint position, torque, and multi-channel ElectroMyoGraphyc patterns), with the ultimate goals of: i) providing significant information for the diagnosis and the classification of muscular spasticity, ii) enhancing the recovery evaluation of patients undergoing through therapeutic rehabilitation procedures and iii) enabling a future active usage of this device also as therapeutic tool.Clinical relevance- The contribution presented in this work proposes a technological advancement for a device-based evaluation of motion impairment related to spasticity, with a major potential impact on both the clinical appraisal and the rehabilitation procedures.


Assuntos
Cotovelo , Reflexo de Estiramento , Eletromiografia , Humanos , Espasticidade Muscular/diagnóstico , Reprodutibilidade dos Testes
7.
J Neuroeng Rehabil ; 17(1): 63, 2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32404174

RESUMO

BACKGROUND: Human-likeliness of robot movements is a key component to enable a safe and effective human-robot interaction, since it contributes to increase acceptance and motion predictability of robots that have to closely interact with people, e.g. for assistance and rehabilitation purposes. Several parameters have been used to quantify how much a robot behaves like a human, which encompass aspects related to both the robot appearance and motion. The latter point is fundamental to allow the operator to interpret robotic actions, and plan a meaningful reactions. While different approaches have been presented in literature, which aim at devising bio-aware control guidelines, a direct implementation of human actions for robot planning is not straightforward, still representing an open issue in robotics. METHODS: We propose to embed a synergistic representation of human movements for robot motion generation. To do this, we recorded human upper-limb motions during daily living activities. We used functional Principal Component Analysis (fPCA) to extract principal motion patterns. We then formulated the planning problem by optimizing the weights of a reduced set of these components. For free-motions, our planning method results into a closed form solution which uses only one principal component. In case of obstacles, a numerical routine is proposed, incrementally enrolling principal components until the problem is solved with a suitable precision. RESULTS: Results of fPCA show that more than 80% of the observed variance can be explained by only three functional components. The application of our method to different meaningful movements, with and without obstacles, show that our approach is able to generate complex motions with a very reduced number of functional components. We show that the first synergy alone accounts for the 96% of cost reduction and that three components are able to achieve a satisfactory motion reconstruction in all the considered cases. CONCLUSIONS: In this work we moved from the analysis of human movements via fPCA characterization to the design of a novel human-like motion generation algorithm able to generate, efficiently and with a reduced set of basis elements, several complex movements in free space, both in free motion and in case of obstacle avoidance tasks.


Assuntos
Algoritmos , Movimento , Robótica/métodos , Extremidade Superior/fisiologia , Humanos , Movimento (Física) , Análise de Componente Principal
8.
IEEE Trans Haptics ; 13(1): 239-245, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32012027

RESUMO

Blindness represents one of the major disabling societal causes, impacting the life of visually impaired people and their families. For what concerns the access to written information, one of the main tools used by blind people is the traditional Braille code. This is the reason why in the recent years, there has been a technological effort to develop refreshable Braille devices. These consist of multiple physical dots that dynamically change their configuration to reproduce different sequences of the letters in Braille code. Although promising, these approaches have many drawbacks, which are mainly related to costs, design complexity, portability, and power consumption. Of note, while many solutions have been proposed for multi-cell devices, the investigation of the potentialities of single-cell refreshable systems has received little attention so far. This investigation could offer effective and viable manners to overcome the aforementioned drawbacks, likely fostering a widespread adoption of such assistive technologies with end-users. In this article, we present the design and characterization of a new cost-effective single-cell Electromagnetic Refreshable Braille Display, the Readable system. We also report on tests performed with blindfolded and blind expert Braille code readers. Results demonstrate the effectiveness of our device in correctly reproducing alphanumeric content, opening promising perspectives in every-day life applications.


Assuntos
Cegueira , Auxiliares de Comunicação para Pessoas com Deficiência , Leitura , Auxiliares Sensoriais , Percepção do Tato , Tato , Adulto , Fenômenos Eletromagnéticos , Desenho de Equipamento , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Interface Usuário-Computador
9.
IEEE Trans Neural Syst Rehabil Eng ; 27(7): 1397-1406, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31135365

RESUMO

In this paper, we present a novel approach to dynamically describe human upper limb trajectories, addressing the question on whether and to which extent synergistic multi-joint behavior is observed and preserved over time evolution and across subjects. To this goal, we performed experiments to collect human upper limb joint angle trajectories and organized them in a dataset of daily living tasks. We then characterized the upper limb poses at each time frame through a technique that we named repeated-principal component analysis (R-PCA). We found that, although there is no strong evidence on the predominance of one principal component (PC) over the others, the subspace identified by the first three PCs takes into account most of the motion variability. We evaluated the stability of these results over time, showing that during the reaching phase, there is a strong consistency of these findings across participants. In other words, our results suggest that there is a time-invariant low-dimensional approximation of upper limb kinematics, which can be used to define a suitable reduced dimensionality control space for upper limb robotic devices in motion phases.


Assuntos
Extremidade Superior/fisiologia , Atividades Cotidianas , Adulto , Algoritmos , Fenômenos Biomecânicos , Eletromiografia , Feminino , Força da Mão/fisiologia , Voluntários Saudáveis , Humanos , Articulações/fisiologia , Masculino , Modelos Teóricos , Análise de Componente Principal , Reprodutibilidade dos Testes , Robótica , Adulto Jovem
10.
IEEE Trans Neural Syst Rehabil Eng ; 27(3): 411-418, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30762562

RESUMO

Recent functional magnetic resonance imaging (fMRI) studies have identified specific neural patterns related to three different categories of movements: intransitive (i.e., meaningful gestures that do not include the use of objects), transitive (i.e., actions involving an object), and tool-mediated (i.e., actions involving a tool to interact with an object). However, fMRI intrinsically limits the exploitation of these results in a real scenario, such as a brain-machine interface. In this paper, we propose a new approach to automatically predict intransitive, transitive, or tool-mediated movements of the upper limb using electroencephalography (EEG) spectra estimated during a motor planning phase. To this end, high-resolution EEG data gathered from 33 healthy subjects were used as input of a three-class k-nearest neighbors classifier. Different combinations of EEG-derived spatial and frequency information were investigated to find the most accurate feature vector. In addition, we studied gender differences further splitting the dataset into only-male data, and only-female data. A remarkable difference was found between accuracies achieved with male and female data, the latter yielding the best performance (78.55% of accuracy for the prediction of intransitive, transitive, and tool-mediated actions). These results potentially suggest that different gender-based models should be employed for the future BMI applications.


Assuntos
Encéfalo/fisiologia , Eletroencefalografia , Gestos , Adulto , Mapeamento Encefálico , Interfaces Cérebro-Computador , Eletromiografia , Feminino , Voluntários Saudáveis , Humanos , Imageamento por Ressonância Magnética , Masculino , Movimento , Lobo Parietal/fisiologia , Córtex Pré-Frontal/fisiologia , Reprodutibilidade dos Testes , Caracteres Sexuais , Extremidade Superior , Adulto Jovem
11.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 4198-4204, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31946795

RESUMO

The accurate assessment of upper limb motion impairment induced by stroke - which represents one of the primary causes of disability world-wide - is the first step to successfully monitor and guide patients' recovery. As of today, the majority of the procedures relies on clinical scales, which are mostly based on ordinal scaling, operator-dependent, and subject to floor and ceiling effects. In this work, we intend to overcome these limitations by proposing a novel approach to analytically evaluate the level of pathological movement coupling, based on the quantification of movement complexity. To this goal, we consider the variations of functional Principal Components applied to the reconstruction of joint angle trajectories of the upper limb during daily living task execution, and compared these variations between two conditions, i.e. the affected and non-affected arm. A Dissimilarity Index, which codifies the severity of the upper limb motor impairment with respect to the movement complexity of the non-affected arm, is then proposed. This methodology was validated as a proof of concept upon a set of four chronic stroke subjects with mild to moderate arm and hand impairments. As a first step, we evaluated whether the derived outcomes differentiate between the two conditions upon the whole data-set. Secondly, we exploited this concept to discern between different subjects and impairment levels. Results show that: i) differences in terms of movement variability between the affected and nonaffected upper limb are detectable and ii) different impairment profiles can be characterized for single subjects using the proposed approach. Although provisional, these results are very promising and suggest this approach as a basis ingredient for the definition of a novel, operator-independent, sensitive, intuitive and widely applicable scale for the evaluation of upper limb motion impairment.


Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Extremidade Superior/fisiopatologia , Interpretação Estatística de Dados , Humanos , Movimento , Projetos Piloto
12.
Annu Int Conf IEEE Eng Med Biol Soc ; 2018: 3060-3063, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30441040

RESUMO

The Electroencephalogram (EEG) can be considered as the output of a nonlinear system whose dynamics is significantly affected by motor tasks. Nevertheless, computational approaches derived from the complex system theory has not been fully exploited for characterising motor imagery tasks. To this extent, in this study we investigated EEG complexity changes throughout the following categories of imaginary motor tasks of the upper limb: transitive (actions involving an object), intransitive (meaningful gestures that do not include the use of objects), and tool-mediated (actions using an object to interact with another one). EEG irregularity was quantified following the definition of Fuzzy Entropy, which has been demonstrated to be a reliable quantifier of system complexity with low dependence on data length. Experimental results from paired statistical analyses revealed minor topographical changes between EEG complexity associated with transitive and tool-mediated tasks, whereas major significant differences were shown between the intransitive actions vs. the others. Our results suggest that EEG complexity level during motor imagery tasks of the upper limb are strongly biased by the presence of an object.


Assuntos
Eletroencefalografia , Extremidade Superior , Encéfalo , Interfaces Cérebro-Computador , Imagens, Psicoterapia
13.
Annu Int Conf IEEE Eng Med Biol Soc ; 2018: 231-234, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30440380

RESUMO

It is known that brain dynamics significantly changes during motor imagery tasks of upper limb involving different kind of interactions with an object. Nevertheless, an automatic discrimination of transitive (i.e., actions involving an object) and intransitive (i.e., meaningful gestures that do not include the use of objects) imaginary actions using EEG dynamics has not been performed yet. In this study we exploit measures of EEG spectra to automatically discern between imaginary transitive and intransitive movements of the upper limb. To this end, nonlinear support vector machine algorithms are used to properly combine EEG-derived features, while a recursive feature elimination procedure highlights the most discriminant cortical regions and associated EEG frequency oscillations. Results show the significance of $\gamma ( 30 -45$ Hz) oscillations over the fronto-occipital and ipsilateral-parietal areas for the automatic classification of transitive-intransitive imaginary upper limb movements with a satisfactory accuracy of 70.97%.


Assuntos
Imagens, Psicoterapia , Máquina de Vetores de Suporte , Eletroencefalografia , Gestos , Movimento
14.
Front Neurorobot ; 11: 41, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28900393

RESUMO

Humans are able to intuitively exploit the shape of an object and environmental constraints to achieve stable grasps and perform dexterous manipulations. In doing that, a vast range of kinematic strategies can be observed. However, in this work we formulate the hypothesis that such ability can be described in terms of a synergistic behavior in the generation of hand postures, i.e., using a reduced set of commonly used kinematic patterns. This is in analogy with previous studies showing the presence of such behavior in different tasks, such as grasping. We investigated this hypothesis in experiments performed by six subjects, who were asked to grasp objects from a flat surface. We quantitatively characterized hand posture behavior from a kinematic perspective, i.e., the hand joint angles, in both pre-shaping and during the interaction with the environment. To determine the role of tactile feedback, we repeated the same experiments but with subjects wearing a rigid shell on the fingertips to reduce cutaneous afferent inputs. Results show the persistence of at least two postural synergies in all the considered experimental conditions and phases. Tactile impairment does not alter significantly the first two synergies, and contact with the environment generates a change only for higher order Principal Components. A good match also arises between the first synergy found in our analysis and the first synergy of grasping as quantified by previous work. The present study is motivated by the interest of learning from the human example, extracting lessons that can be applied in robot design and control. Thus, we conclude with a discussion on implications for robotics of our findings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...