Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 12(16)2023 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-37626910

RESUMO

Spinocerebellar ataxia type 5 (SCA5) is a neurodegenerative disease caused by mutations in the SPTBN2 gene encoding the cytoskeletal protein ß-III-spectrin. Previously, we demonstrated that a L253P missense mutation, localizing to the ß-III-spectrin actin-binding domain (ABD), causes increased actin-binding affinity. Here we investigate the molecular consequences of nine additional ABD-localized, SCA5 missense mutations: V58M, K61E, T62I, K65E, F160C, D255G, T271I, Y272H, and H278R. We show that all of the mutations, similar to L253P, are positioned at or near the interface of the two calponin homology subdomains (CH1 and CH2) comprising the ABD. Using biochemical and biophysical approaches, we demonstrate that the mutant ABD proteins can attain a well-folded state. However, thermal denaturation studies show that all nine mutations are destabilizing, suggesting a structural disruption at the CH1-CH2 interface. Importantly, all nine mutations cause increased actin binding. The mutant actin-binding affinities vary greatly, and none of the nine mutations increase actin-binding affinity as much as L253P. ABD mutations causing high-affinity actin binding, with the notable exception of L253P, appear to be associated with an early age of symptom onset. Altogether, the data indicate that increased actin-binding affinity is a shared molecular consequence of numerous SCA5 mutations, which has important therapeutic implications.


Assuntos
Actinas , Ataxias Espinocerebelares , Humanos , Actinas/genética , Espectrina/genética , Mutação/genética , Mutação de Sentido Incorreto , Ataxias Espinocerebelares/genética
2.
Biochem Biophys Res Commun ; 670: 12-18, 2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37271035

RESUMO

Hypertrophic cardiomyopathy (HCM), dilated cardiomyopathy (DCM), and restrictive cardiomyopathy (RCM) are characterized by thickening, thinning, or stiffening, respectively, of the ventricular myocardium, resulting in diastolic or systolic dysfunction that can lead to heart failure and sudden cardiac death. Recently, variants in the ACTN2 gene, encoding the protein α-actinin-2, have been reported in HCM, DCM, and RCM patients. However, functional data supporting the pathogenicity of these variants is limited, and potential mechanisms by which these variants cause disease are largely unexplored. Currently, NIH ClinVar lists 34 ACTN2 missense variants, identified in cardiomyopathy patients, which we predict are likely to disrupt actin binding, based on their localization to specific substructures in the α-actinin-2 actin binding domain (ABD). We investigated the molecular consequences of three ABD localized, HCM-associated variants: A119T, M228T and T247 M. Using circular dichroism, we demonstrate that the mutant ABD proteins can attain a well-folded state. However, thermal denaturation studies show that all three mutations are destabilizing, suggesting a structural disruption. Importantly, A119T decreased actin binding, and M228T and T247M cause increased actin binding. We suggest that altered actin binding underlies pathogenesis for cardiomyopathy mutations localizing to the ABD of α-actinin-2.


Assuntos
Cardiomiopatias , Cardiomiopatia Dilatada , Cardiomiopatia Hipertrófica , Humanos , Actinina/genética , Actinina/metabolismo , Actinas/metabolismo , Cardiomiopatia Dilatada/genética , Cardiomiopatia Hipertrófica/genética , Mutação
3.
bioRxiv ; 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-36865188

RESUMO

Spinocerebellar ataxia type 5 (SCA5) is a neurodegenerative disease caused by mutations in the SPTBN2 gene encoding the cytoskeletal protein ß-III-spectrin. Previously, we demonstrated that a L253P missense mutation, localizing to the ß-III-spectrin actin-binding domain (ABD), causes increased actin-binding affinity. Here we investigate the molecular consequences of nine additional ABD-localized, SCA5 missense mutations: V58M, K61E, T62I, K65E, F160C, D255G, T271I, Y272H, and H278R. We show that all of the mutations, similar to L253P, are positioned at or near the interface of the two calponin homology subdomains (CH1 and CH2) comprising the ABD. Using biochemical and biophysical approaches, we demonstrate that the mutant ABD proteins can attain a well-folded state. However, thermal denaturation studies show that all nine mutations are destabilizing, suggesting a structural disruption at the CH1-CH2 interface. Importantly, all nine mutations cause increased actin binding. The mutant actin-binding affinities vary greatly, and none of the nine mutations increase actin-binding affinity as much as L253P. ABD mutations causing high-affinity actin binding, with the notable exception of L253P, appear to be associated with early age of symptom onset. Altogether, the data indicate increased actin-binding affinity is a shared molecular consequence of numerous SCA5 mutations, which has important therapeutic implications.

4.
J Biol Chem ; 299(3): 102956, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36731793

RESUMO

ß-III-Spectrin is a key cytoskeletal protein that localizes to the soma and dendrites of cerebellar Purkinje cells and is required for dendritic arborization and signaling. A spinocerebellar ataxia type 5 L253P mutation in the cytoskeletal protein ß-III-spectrin causes high-affinity actin binding. Previously we reported a cell-based fluorescence assay for identification of small-molecule actin-binding modulators of the L253P mutant ß-III-spectrin. Here we describe a complementary, in vitro, fluorescence resonance energy transfer (FRET) assay that uses purified L253P ß-III-spectrin actin-binding domain (ABD) and F-actin. To validate the assay for high-throughput compatibility, we first confirmed that our 50% FRET signal was responsive to swinholide A, an actin-severing compound, and that this yielded excellent assay quality with a Z' value > 0.77. Second, we screened a 2684-compound library of US Food and Drug Administration-approved drugs. Importantly, the screening identified numerous compounds that decreased FRET between fluorescently labeled L253P ABD and F-actin. The activity and target of multiple Hit compounds were confirmed in orthologous cosedimentation actin-binding assays. Through future medicinal chemistry, the Hit compounds can potentially be developed into a spinocerebellar ataxia type 5-specific therapeutic. Furthermore, our validated FRET-based in vitro high-throughput screening platform is poised for screening large compound libraries for ß-III-spectrin ABD modulators.


Assuntos
Actinas , Espectrina , Ataxias Espinocerebelares , Humanos , Actinas/genética , Actinas/metabolismo , Descoberta de Drogas , Neurônios/metabolismo , Espectrina/metabolismo , Ataxias Espinocerebelares/tratamento farmacológico , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/metabolismo
5.
Sci Rep ; 12(1): 1726, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-35110634

RESUMO

Recent structural studies of ß-III-spectrin and related cytoskeletal proteins revealed N-terminal sequences that directly bind actin. These sequences are variable in structure, and immediately precede a conserved actin-binding domain composed of tandem calponin homology domains (CH1 and CH2). Here we investigated in Drosophila the significance of the ß-spectrin N-terminus, and explored its functional interaction with a CH2-localized L253P mutation that underlies the neurodegenerative disease spinocerebellar ataxia type 5 (SCA5). We report that pan-neuronal expression of an N-terminally truncated ß-spectrin fails to rescue lethality resulting from a ß-spectrin loss-of-function allele, indicating that the N-terminus is essential to ß-spectrin function in vivo. Significantly, N-terminal truncation rescues neurotoxicity and defects in dendritic arborization caused by L253P. In vitro studies show that N-terminal truncation eliminates L253P-induced high-affinity actin binding, providing a mechanistic basis for rescue. These data suggest that N-terminal sequences may be useful therapeutic targets for small molecule modulation of the aberrant actin binding associated with SCA5 ß-spectrin and spectrin-related disease proteins.


Assuntos
Actinas/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Neurônios/metabolismo , Espectrina/metabolismo , Ataxias Espinocerebelares/metabolismo , Animais , Animais Geneticamente Modificados , Sítios de Ligação , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Feminino , Masculino , Mutação , Plasticidade Neuronal , Neurônios/patologia , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Espectrina/genética , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/patologia
6.
J Biol Chem ; 296: 100215, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33839680

RESUMO

Numerous diseases are linked to mutations in the actin-binding domains (ABDs) of conserved cytoskeletal proteins, including ß-III-spectrin, α-actinin, filamin, and dystrophin. A ß-III-spectrin ABD mutation (L253P) linked to spinocerebellar ataxia type 5 (SCA5) causes a dramatic increase in actin binding. Reducing actin binding of L253P is thus a potential therapeutic approach for SCA5 pathogenesis. Here, we validate a high-throughput screening (HTS) assay to discover potential disrupters of the interaction between the mutant ß-III-spectrin ABD and actin in live cells. This assay monitors FRET between fluorescent proteins fused to the mutant ABD and the actin-binding peptide Lifeact, in HEK293-6E cells. Using a specific and high-affinity actin-binding tool compound, swinholide A, we demonstrate HTS compatibility with an excellent Z'-factor of 0.67 ± 0.03. Screening a library of 1280 pharmacologically active compounds in 1536-well plates to determine assay robustness, we demonstrate high reproducibility across plates and across days. We identified nine Hits that reduced FRET between Lifeact and ABD. Four of those Hits were found to reduce Lifeact cosedimentation with actin, thus establishing the potential of our assay for detection of actin-binding modulators. Concurrent to our primary FRET assay, we also developed a high-throughput compatible counter screen to remove undesirable FRET Hits. Using the FRET Hits, we show that our counter screen is sensitive to undesirable compounds that cause cell toxicity or ABD aggregation. Overall, our FRET-based HTS platform sets the stage to screen large compound libraries for modulators of ß-III-spectrin, or disease-linked spectrin-related proteins, for therapeutic development.


Assuntos
Actinas/metabolismo , Sítios de Ligação/efeitos dos fármacos , Ensaios de Triagem em Larga Escala , Proteínas Recombinantes de Fusão/metabolismo , Espectrina/metabolismo , Actinas/química , Actinas/genética , Transferência Ressonante de Energia de Fluorescência , Expressão Gênica , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Cinética , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Toxinas Marinhas/farmacologia , Modelos Biológicos , Modelos Moleculares , Mutação , Fármacos Neuroprotetores/farmacologia , Ligação Proteica/efeitos dos fármacos , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Reprodutibilidade dos Testes , Espectrina/química , Espectrina/genética , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/metabolismo , Ataxias Espinocerebelares/patologia , Proteína Vermelha Fluorescente
7.
Nat Commun ; 8(1): 1350, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-29116080

RESUMO

Spinocerebellar ataxia type 5 (SCA5) is a neurodegenerative disease caused by mutations in the cytoskeletal protein ß-III-spectrin. Previously, a SCA5 mutation resulting in a leucine-to-proline substitution (L253P) in the actin-binding domain (ABD) was shown to cause a 1000-fold increase in actin-binding affinity. However, the structural basis for this increase is unknown. Here, we report a 6.9 Å cryo-EM structure of F-actin complexed with the L253P ABD. This structure, along with co-sedimentation and pulsed-EPR measurements, demonstrates that high-affinity binding caused by the CH2-localized mutation is due to opening of the two CH domains. This enables CH1 to bind actin aided by an unstructured N-terminal region that becomes α-helical upon binding. This helix is required for association with actin as truncation eliminates binding. Collectively, these results shed light on the mechanism by which ß-III-spectrin, and likely similar actin-binding proteins, interact with actin, and how this mechanism can be perturbed to cause disease.


Assuntos
Actinas/metabolismo , Mutação de Sentido Incorreto , Espectrina/química , Espectrina/genética , Sítios de Ligação , Microscopia Crioeletrônica , Espectroscopia de Ressonância de Spin Eletrônica , Humanos , Modelos Moleculares , Conformação Proteica , Domínios Proteicos , Espectrina/metabolismo
8.
Proc Natl Acad Sci U S A ; 114(44): E9376-E9385, 2017 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-29078305

RESUMO

A spinocerebellar ataxia type 5 (SCA5) L253P mutation in the actin-binding domain (ABD) of ß-III-spectrin causes high-affinity actin binding and decreased thermal stability in vitro. Here we show in mammalian cells, at physiological temperature, that the mutant ABD retains high-affinity actin binding. Significantly, we provide evidence that the mutation alters the mobility and recruitment of ß-III-spectrin in mammalian cells, pointing to a potential disease mechanism. To explore this mechanism, we developed a Drosophila SCA5 model in which an equivalent mutant Drosophila ß-spectrin is expressed in neurons that extend complex dendritic arbors, such as Purkinje cells, targeted in SCA5 pathogenesis. The mutation causes a proximal shift in arborization coincident with decreased ß-spectrin localization in distal dendrites. We show that SCA5 ß-spectrin dominantly mislocalizes α-spectrin and ankyrin-2, components of the endogenous spectrin cytoskeleton. Our data suggest that high-affinity actin binding by SCA5 ß-spectrin interferes with spectrin-actin cytoskeleton dynamics, leading to a loss of a cytoskeletal mechanism in distal dendrites required for dendrite stabilization and arbor outgrowth.


Assuntos
Citoesqueleto/genética , Dendritos/genética , Mutação/genética , Plasticidade Neuronal/genética , Espectrina/genética , Ataxias Espinocerebelares/genética , Animais , Anquirinas/genética , Células Cultivadas , Drosophila/genética , Drosophila/fisiologia , Células HEK293 , Humanos , Neurônios/fisiologia , Ligação Proteica/genética , Células de Purkinje/fisiologia
9.
Sci Rep ; 6: 21375, 2016 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-26883385

RESUMO

Spinocerebellar ataxia type 5 (SCA5) is a human neurodegenerative disease that stems from mutations in the SPTBN2 gene encoding the protein ß-III-spectrin. Here we investigated the molecular consequence of a SCA5 missense mutation that results in a L253P substitution in the actin-binding domain (ABD) of ß-III-spectrin. We report that the L253P substitution in the isolated ß-III-spectrin ABD causes strikingly high F-actin binding affinity (Kd = 75.5 nM) compared to the weak F-actin binding affinity of the wild-type ABD (Kd = 75.8 µM). The mutation also causes decreased thermal stability (Tm = 44.6 °C vs 59.5 °C). Structural analyses indicate that leucine 253 is in a loop at the interface of the tandem calponin homology (CH) domains comprising the ABD. Leucine 253 is predicted to form hydrophobic contacts that bridge the CH domains. The decreased stability of the mutant indicates that these bridging interactions are probably disrupted, suggesting that the high F-actin binding affinity of the mutant is due to opening of the CH domain interface. These results support a fundamental role for leucine 253 in regulating opening of the CH domain interface and binding of the ABD to F-actin. This study indicates that high-affinity actin binding of L253P ß-III-spectrin is a likely driver of neurodegeneration.


Assuntos
Mutação , Espectrina/genética , Espectrina/metabolismo , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/metabolismo , Actinas/metabolismo , Sequência de Aminoácidos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas/genética , Estabilidade Proteica , Espectrina/química , Termodinâmica
10.
Methods Cell Biol ; 131: 277-309, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26794520

RESUMO

Proper neuronal function critically depends on efficient intracellular transport and disruption of transport leads to neurodegeneration. Molecular pathways that support or regulate neuronal transport are not fully understood. A greater understanding of these pathways will help reveal the pathological mechanisms underlying disease. Drosophila melanogaster is the premier model system for performing large-scale genetic functional screens. Here we describe methods to carry out primary and secondary genetic screens in Drosophila aimed at identifying novel gene products and pathways that impact neuronal intracellular transport. These screens are performed using whole animal or live cell imaging of intact neural tissue to ensure integrity of neurons and their cellular environment. The primary screen is used to identify gross defects in neuronal function indicative of a disruption in microtubule-based transport. The secondary screens, conducted in both motoneurons and dendritic arborization neurons, will confirm the function of candidate gene products in intracellular transport. Together, the methodologies described here will support labs interested in identifying and characterizing gene products that alter intracellular transport in Drosophila.


Assuntos
Transporte Axonal/genética , Axônios/metabolismo , Drosophila melanogaster/metabolismo , Dineínas/metabolismo , Cinesinas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Animais , Transporte Axonal/fisiologia , Dendritos/fisiologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Complexo Dinactina , Dineínas/genética , Larva/metabolismo , Microtúbulos/genética , Microtúbulos/metabolismo , Doenças Neurodegenerativas/patologia , Plasticidade Neuronal/genética , Plasticidade Neuronal/fisiologia , Interferência de RNA , RNA Interferente Pequeno/genética
11.
Mol Biol Cell ; 19(12): 5181-92, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18829867

RESUMO

How scaffold proteins integrate signaling pathways with cytoskeletal components to drive axon outgrowth is not well understood. We report here that the multidomain scaffold protein Plenty of SH3s (POSH) regulates axon outgrowth. Reduction of POSH function by RNA interference (RNAi) enhances axon outgrowth in differentiating mouse primary cortical neurons and in neurons derived from mouse P19 cells, suggesting POSH negatively regulates axon outgrowth. Complementation analysis reveals a requirement for the third Src homology (SH) 3 domain of POSH, and we find that the actomyosin regulatory protein Shroom3 interacts with this domain of POSH. Inhibition of Shroom3 expression by RNAi leads to increased process lengths, as observed for POSH RNAi, suggesting that POSH and Shroom function together to inhibit process outgrowth. Complementation analysis and interference of protein function by dominant-negative approaches suggest that Shroom3 recruits Rho kinase to inhibit process outgrowth. Furthermore, inhibition of myosin II function reverses the POSH or Shroom3 RNAi phenotype, indicating a role for myosin II regulation as a target of the POSH-Shroom complex. Collectively, these results suggest that the molecular scaffold protein POSH assembles an inhibitory complex that links to the actin-myosin network to regulate neuronal process outgrowth.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Axônios/metabolismo , Proteínas do Citoesqueleto/metabolismo , Neurônios/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Axônios/ultraestrutura , Células Cultivadas , Córtex Cerebral/citologia , Proteínas do Citoesqueleto/genética , Teste de Complementação Genética , Humanos , Camundongos , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Neurônios/citologia , Miosina não Muscular Tipo IIA/genética , Miosina não Muscular Tipo IIA/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estrutura Terciária de Proteína , Interferência de RNA , Técnicas do Sistema de Duplo-Híbrido , Quinases Associadas a rho/antagonistas & inibidores , Quinases Associadas a rho/genética , Quinases Associadas a rho/metabolismo
12.
Cell Signal ; 19(1): 177-84, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16887332

RESUMO

UNC-51-like kinases (ULK) are members of an evolutionarily conserved sub-family of ubiquitously expressed serine/threonine-specific protein kinases. Here we report that fibroblast growth factor receptor substrate (FRS) 2/3 are novel ULK2 carboxy-terminal domain interacting proteins. FRS2/3 are homologs that function as adaptor proteins to mediate signaling of multiple receptor tyrosine kinases. ULK2 interacts with the phospho-tyrosine binding (PTB) domain of FRS2/3. We demonstrate that siRNA targeting ULK2 in mouse P19 cells results in elevated FGFR1 mediated FRS3 and SHP2 tyrosyl phosphorylation. In addition, RNAi-mediated decrease in ULK2 causes increased interaction between FGFR1 and FRS3. ULK2 phosphorylates FRS2/3 in vitro, suggesting that ULK2 mediated phosphorylation may be a mechanism of FRS2/3 regulation. The data presented support a model in which ULK2, by interaction with FRS2/3 and inhibition of SynGAP, functions to negatively regulate tyrosyl phosphorylation of signaling proteins downstream of FGFR1.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Sequência de Aminoácidos , Animais , Proteína Homóloga à Proteína-1 Relacionada à Autofagia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Dados de Sequência Molecular , Fosforilação , Ligação Proteica , Estrutura Terciária de Proteína , Proteína Tirosina Fosfatase não Receptora Tipo 11 , Proteínas Tirosina Fosfatases/metabolismo , Transdução de Sinais , Técnicas do Sistema de Duplo-Híbrido , Tirosina/metabolismo , Proteínas Ativadoras de ras GTPase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...