Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(29): e2202875119, 2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858328

RESUMO

Obtaining estimates of Earth's magnetic field strength in deep time is complicated by nonideal rock magnetic behavior in many igneous rocks. In this study, we target anorthosite xenoliths that cooled and acquired their magnetization within ca. 1,092 Ma shallowly emplaced diabase intrusions of the North American Midcontinent Rift. In contrast to the diabase which fails to provide reliable paleointensity estimates, the anorthosite xenoliths are unusually high-fidelity recorders yielding high-quality, single-slope paleointensity results that are consistent at specimen and site levels. An average value of ∼83 ZAm2 for the virtual dipole moment from the anorthosite xenoliths, with the highest site-level values up to ∼129 ZAm2, is higher than that of the dipole component of Earth's magnetic field today and rivals the highest values in the paleointensity database. Such high intensities recorded by the anorthosite xenoliths require the existence of a strongly powered geodynamo at the time. Together with previous paleointensity data from other Midcontinent Rift rocks, these results indicate that a dynamo with strong power sources persisted for more than 14 My ca. 1.1 Ga. These data are inconsistent with there being a progressive monotonic decay of Earth's dynamo strength through the Proterozoic Eon and could challenge the hypothesis of a young inner core. The multiple observed paleointensity transitions from weak to strong in the Paleozoic and the Proterozoic present challenges in identifying the onset of inner core nucleation based on paleointensity records alone.

2.
J Hum Evol ; 55(1): 1-11, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18501953

RESUMO

We present here the results of 44 paleomagnetic measurements, and single cosmogenic burial and optically stimulated luminescence ages for the Earlier Stone Age deposits from Wonderwerk Cave, Northern Cape, South Africa. The resulting paleomagnetic sequence: N>R>N>R>N constrains the Earlier Stone Age strata in this part of the site to between approximately 0.78-1.96 Ma. A single cosmogenic date of approximately 2.0 Ma from the base of the section offers some corroboration for the paleomagnetic sequence. Preliminary results indicate that the small lithic assemblage from the basal stratum may contain an Oldowan facies. This is overlain by several strata containing Acheulean industries. The preliminary radiometric dates reported here place the onset of the Acheulean at this site to approximately 1.6 Ma, which is roughly contemporaneous with that of East Africa.


Assuntos
Arqueologia , Hominidae , Animais , Fósseis , Humanos , Radiometria , África do Sul
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...