Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Synth Biol ; 7(7): 1676-1684, 2018 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-29976056

RESUMO

Multifactorial approaches can quickly and efficiently model complex, interacting natural or engineered biological systems in a way that traditional one-factor-at-a-time experimentation can fail to do. We applied a Design of Experiments (DOE) approach to model ethanol biosynthesis in yeast, which is well-understood and genetically tractable, yet complex. Six alcohol dehydrogenase (ADH) isozymes catalyze ethanol synthesis, differing in their transcriptional and post-translational regulation, subcellular localization, and enzyme kinetics. We generated a combinatorial library of all ADH gene deletions and measured the impact of gene deletion(s) and environmental context on ethanol production of a subset of this library. The data were used to build a statistical model that described known behaviors of ADH isozymes and identified novel interactions. Importantly, the model described features of ADH metabolic behavior without explicit a priori knowledge. The method is therefore highly suited to understanding and optimizing metabolic pathways in less well-understood systems.


Assuntos
Álcool Desidrogenase/metabolismo , Etanol/metabolismo , Isoenzimas/metabolismo , Modelos Estatísticos , Álcool Desidrogenase/genética , Isoenzimas/genética , Engenharia Metabólica/métodos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Microbiologyopen ; 6(4)2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28660691

RESUMO

Microalgae are widely viewed as a promising and sustainable source of renewable chemicals and biofuels. Botryococcus braunii synthesizes and secretes significant amounts of long-chain (C30 -C40 ) hydrocarbons that can be subsequently converted into gasoline, diesel, and aviation fuel. B. braunii cultures are not axenic and the effects of co-cultured microorganisms on B. braunii growth and hydrocarbon yield are important, but sometimes contradictory. To understand the composition of the B. braunii microbial consortium, we used high throughput Illumina sequencing of metagenomic DNA to profile the microbiota within a well established, stable B. braunii culture and characterized the demographic changes in the microcosm following modification to the culture conditions. DNA sequences attributed to B. braunii were present in equal quantities in all treatments, whereas sequences assigned to the associated microbial community were dramatically altered. Bacterial species least affected by treatments, and more robustly associated with the algal cells, included members of Rhizobiales, comprising Bradyrhizobium and Methylobacterium, and representatives of Dyadobacter, Achromobacter and Asticcacaulis. The presence of bacterial species identified by metagenomics was confirmed by additional 16S rDNA analysis of bacterial isolates. Our study demonstrates the advantages of high throughput sequencing and robust metagenomic analyses to define microcosms and further our understanding of microbial ecology.


Assuntos
Bactérias/classificação , Bactérias/isolamento & purificação , Clorófitas/crescimento & desenvolvimento , Consórcios Microbianos , Bactérias/genética , Bactérias/crescimento & desenvolvimento , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Metagenômica , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
3.
Genom Data ; 13: 1-2, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28560168

RESUMO

Most eukaryotic oleaginous species are yeasts and among them the basidiomycete red yeast, Rhodotorula (Rhodosporidium) toruloides (Pucciniomycotina) is known to produce high quantities of lipids when grown in nitrogen-limiting media, and has potential for biodiesel production. The genome of the CGMCC 2.1609 strain of this oleaginous red yeast was sequenced using a hybrid of Roche 454 and Illumina technology generating 13 × coverage. The de novo assembly was carried out using MIRA and scaffolded using MAQ and BAMBUS. The sequencing and assembly resulted in 365 scaffolds with total genome size of 33.4 Mb. The complete genome sequence of this strain was deposited in GenBank and the accession number is LKER00000000. The annotation is available on Figshare (doi:10.6084/m9.figshare.4754251).

4.
Front Microbiol ; 7: 1666, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27818654

RESUMO

Rhodotorula (Rhodosporidium) toruloides is an oleaginous yeast with great biotechnological potential, capable of accumulating lipid up to 70% of its dry biomass, and of carotenoid biosynthesis. However, few molecular genetic tools are available for manipulation of this basidiomycete yeast and its high genomic GC content can make routine cloning difficult. We have developed plasmid vectors for transformation of R. toruloides which include elements for Saccharomyces cerevisiae in-yeast assembly; this method is robust to the assembly of GC-rich DNA and of large plasmids. Using such vectors we screened for controllable promoters, and identified inducible promoters from the genes NAR1, ICL1, CTR3, and MET16. These four promoters have independent induction/repression conditions and exhibit different levels and rates of induction in R. toruloides, making them appropriate for controllable transgene expression in different experimental situations. Nested deletions were used to identify regulatory regions in the four promoters, and to delimit the minimal inducible promoters, which are as small as 200 bp for the NAR1 promoter. The NAR1 promoter shows very tight regulation under repressed conditions as determined both by an EGFP reporter gene and by conditional rescue of a leu2 mutant. These new tools facilitate molecular genetic manipulation and controllable gene expression in R. toruloides.

5.
Genome Announc ; 4(1)2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26769927

RESUMO

A variety of bacteria associate with the hydrocarbon-producing microalga Botryococcus braunii, some of which may influence its growth. We report here the genome sequences for Achromobacter piechaudii GCS2, Agrobacterium sp. strain SUL3, Microbacterium sp. strain GCS4, and Shinella sp. strains GWS1 and SUS2, isolated from a laboratory culture of B. braunii, race B, strain Guadeloupe.

6.
Fungal Genet Biol ; 69: 84-95, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24973462

RESUMO

Candida albicans demonstrates three main growth morphologies: yeast, pseudohyphal and true hyphal forms. Cell separation is distinct in these morphological forms and the process of separation is closely linked to the completion of mitosis and cytokinesis. In Saccharomyces cerevisiae the small GTPase Tem1 is known to initiate the mitotic exit network, a signalling pathway involved in signalling the end of mitosis and initiating cytokinesis and cell separation. Here we have characterised the role of Tem1 in C. albicans, and demonstrate that it is essential for mitotic exit and cytokinesis, and that this essential function is signalled through the kinase Cdc15. Cells depleted of Tem1 displayed highly polarised growth but ultimately failed to both complete cytokinesis and re-enter the cell cycle following nuclear division. Consistent with its role in activating the mitotic exit network Tem1 localises to spindle pole bodies in a cell cycle-dependent manner. Ultimately, the mitotic exit network in C. albicans appears to co-ordinate the sequential processes of mitotic exit, cytokinesis and cell separation.


Assuntos
Candida albicans/fisiologia , Citocinese , Mitose , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Candida albicans/genética , Proteínas de Ciclo Celular , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas de Ligação ao GTP , Proteínas Monoméricas de Ligação ao GTP/genética , Transdução de Sinais
7.
Proc Natl Acad Sci U S A ; 110(19): 7636-41, 2013 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-23610415

RESUMO

Biofuels are the most immediate, practical solution for mitigating dependence on fossil hydrocarbons, but current biofuels (alcohols and biodiesels) require significant downstream processing and are not fully compatible with modern, mass-market internal combustion engines. Rather, the ideal biofuels are structurally and chemically identical to the fossil fuels they seek to replace (i.e., aliphatic n- and iso-alkanes and -alkenes of various chain lengths). Here we report on production of such petroleum-replica hydrocarbons in Escherichia coli. The activity of the fatty acid (FA) reductase complex from Photorhabdus luminescens was coupled with aldehyde decarbonylase from Nostoc punctiforme to use free FAs as substrates for alkane biosynthesis. This combination of genes enabled rational alterations to hydrocarbon chain length (Cn) and the production of branched alkanes through upstream genetic and exogenous manipulations of the FA pool. Genetic components for targeted manipulation of the FA pool included expression of a thioesterase from Cinnamomum camphora (camphor) to alter alkane Cn and expression of the branched-chain α-keto acid dehydrogenase complex and ß-keto acyl-acyl carrier protein synthase III from Bacillus subtilis to synthesize branched (iso-) alkanes. Rather than simply reconstituting existing metabolic routes to alkane production found in nature, these results demonstrate the ability to design and implement artificial molecular pathways for the production of renewable, industrially relevant fuel molecules.


Assuntos
Biocombustíveis , Biotecnologia/métodos , Escherichia coli/metabolismo , Ácidos Graxos não Esterificados/química , Alcanos/química , Bacillus subtilis/enzimologia , Carbono/química , Cinnamomum/enzimologia , Engenharia Genética/métodos , Dados de Sequência Molecular , Nostoc/enzimologia , Photorhabdus/enzimologia , Biologia Sintética/métodos
8.
Nature ; 492(7427): 59-65, 2012 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-23201678

RESUMO

Cryptophyte and chlorarachniophyte algae are transitional forms in the widespread secondary endosymbiotic acquisition of photosynthesis by engulfment of eukaryotic algae. Unlike most secondary plastid-bearing algae, miniaturized versions of the endosymbiont nuclei (nucleomorphs) persist in cryptophytes and chlorarachniophytes. To determine why, and to address other fundamental questions about eukaryote-eukaryote endosymbiosis, we sequenced the nuclear genomes of the cryptophyte Guillardia theta and the chlorarachniophyte Bigelowiella natans. Both genomes have >21,000 protein genes and are intron rich, and B. natans exhibits unprecedented alternative splicing for a single-celled organism. Phylogenomic analyses and subcellular targeting predictions reveal extensive genetic and biochemical mosaicism, with both host- and endosymbiont-derived genes servicing the mitochondrion, the host cell cytosol, the plastid and the remnant endosymbiont cytosol of both algae. Mitochondrion-to-nucleus gene transfer still occurs in both organisms but plastid-to-nucleus and nucleomorph-to-nucleus transfers do not, which explains why a small residue of essential genes remains locked in each nucleomorph.


Assuntos
Núcleo Celular/genética , Cercozoários/genética , Criptófitas/genética , Evolução Molecular , Genoma/genética , Mosaicismo , Simbiose/genética , Proteínas de Algas/genética , Proteínas de Algas/metabolismo , Processamento Alternativo/genética , Cercozoários/citologia , Cercozoários/metabolismo , Criptófitas/citologia , Criptófitas/metabolismo , Citosol/metabolismo , Duplicação Gênica/genética , Transferência Genética Horizontal/genética , Genes Essenciais/genética , Genoma Mitocondrial/genética , Genoma de Planta/genética , Genomas de Plastídeos/genética , Dados de Sequência Molecular , Filogenia , Transporte Proteico , Proteoma/genética , Proteoma/metabolismo , Transcriptoma/genética
9.
Subcell Biochem ; 62: 19-35, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22918578

RESUMO

DNA replication research to date has focused on model organisms such as the vertebrate Xenopus laevis and the yeast species Saccharomyces cerevisiae and Schizosaccharomyces pombe. However, animals and fungi both belong to the Opisthokonta, one of about six eukaryotic phylogenetic 'supergroups', and therefore represent only a fraction of eukaryotic diversity. To explore evolutionary diversification of the eukaryotic DNA replication machinery a bioinformatic approach was used to investigate the presence or absence of yeast/animal replisome components in other eukaryotic taxa. A comparative genomic survey was undertaken of 59 DNA replication proteins in a diverse range of 36 eukaryotes from all six supergroups. Twenty-three proteins including Mcm2-7, Cdc45, RPA1, primase, some DNA polymerase subunits, RFC1-5, PCNA and Fen1 are present in all species examined. A further 20 proteins are present in all six eukaryotic supergroups, although not necessarily in every species: with the exception of RNase H2B and the fork protection complex component Timeless/Tof1, all of these are members of anciently derived paralogous families such as ORC, MCM, GINS or RPA. Together these form a set of 43 proteins that must have been present in the last common eukaryotic ancestor (LCEA). This minimal LCEA replisome is significantly more complex than the related replisome in Archaea, indicating evolutionary events including duplications of DNA replication genes in the LCEA lineage which parallel the early evolution of other complex eukaryotic cellular features.


Assuntos
Replicação do DNA , Proteínas de Ligação a DNA/biossíntese , Evolução Molecular , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Proteínas de Xenopus , Animais , Replicação do DNA/fisiologia , DNA Fúngico , Proteínas de Ligação a DNA/genética , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis
10.
DNA Repair (Amst) ; 10(11): 1154-63, 2011 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-21945095

RESUMO

Initiation of DNA replication in eukaryotes is a highly conserved and ordered process involving the co-ordinated, stepwise association of distinct proteins at multiple origins of replication throughout the genome. Here, taking Schizosaccharomyces pombe as a model, the role of Rad4(TopBP1) in the assembly of the replication complex has been examined. Quantitative chromatin immunoprecipitation experiments confirm that Rad4(TopBP1) associates with origins of DNA replication and, in addition, demonstrate that the protein is not present within the active replisome. A direct interaction between Rad4(TopBP1) and Mcm10 is shown and this is reflected in the Rad4(TopBP1)-dependent origin association of Mcm10. Rad4(TopBP1) is also shown to interact with Sld2 and Sld3 and to be required for the stable origin association of these two proteins. Rad4(TopBP1) chromatin association at stalled replication forks was found to be dependent upon the checkpoint protein Rad9, which was not required for Rad4(TopBP1) origin association. Comparison of the levels of chromatin association at origins of replication and stalled replication forks and the differential requirement for Rad9 suggest functional differences for Rad4(TopBP1) at these distinct sites.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Replicação do DNA , Proteínas de Ligação a DNA/metabolismo , Origem de Replicação , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Transglutaminases/metabolismo , Pontos de Checagem do Ciclo Celular , Proteínas de Manutenção de Minicromossomo , Ligação Proteica/fisiologia
11.
Ann Bot ; 107(7): 1119-26, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21508040

RESUMO

BACKGROUND: The initiation of DNA replication is a very important and highly regulated step in the cell division cycle. It is of interest to compare different groups of eukaryotic organisms (a) to identify the essential molecular events that occur in all eukaryotes, (b) to start to identify higher-level regulatory mechanisms that are specific to particular groups and (c) to gain insights into the evolution of initiation mechanisms. SCOPE: This review features a wide-ranging literature survey covering replication origins, origin recognition and usage, modification of origin usage (especially in response to plant hormones), assembly of the pre-replication complex, loading of the replisome, genomics, and the likely origin of these mechanisms and proteins in Archaea. CONCLUSIONS: In all eukaryotes, chromatin is organized for DNA replication as multiple replicons. In each replicon, replication is initiated at an origin. With the exception of those in budding yeast, replication origins, including the only one to be isolated so far from a plant, do not appear to embody a specific sequence; rather, they are AT-rich, with short tracts of locally bent DNA. The proteins involved in initiation are remarkably similar across the range of eukaryotes. Nevertheless, their activity may be modified by plant-specific mechanisms, including regulation by plant hormones. The molecular features of initiation are seen in a much simpler form in the Archaea. In particular, where eukaryotes possess a number of closely related proteins that form 'hetero-complexes' (such as the origin recognition complex and the MCM complex), archaeans typically possess one type of protein (e.g. one MCM) that forms a homo-complex. This suggests that several eukaryotic initiation proteins have evolved from archaeal ancestors by gene duplication and divergence.


Assuntos
Replicação do DNA/genética , Evolução Molecular , Replicação do DNA/efeitos dos fármacos , DNA de Plantas/genética , Modelos Biológicos , Reguladores de Crescimento de Plantas/farmacologia , Origem de Replicação/efeitos dos fármacos , Origem de Replicação/genética
12.
Plant Cell ; 22(2): 497-507, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20190078

RESUMO

To gain entry to plants, many pathogenic fungi develop specialized infection structures called appressoria. Here, we demonstrate that appressorium morphogenesis in the rice blast fungus Magnaporthe oryzae is tightly regulated by the cell cycle. Shortly after a fungus spore lands on the rice (Oryza sativa) leaf surface, a single round of mitosis always occurs in the germ tube. We found that initiation of infection structure development is regulated by a DNA replication-dependent checkpoint. Genetic intervention in DNA synthesis, by conditional mutation of the Never-in-Mitosis 1 gene, prevented germ tubes from developing nascent infection structures. Cellular differentiation of appressoria, however, required entry into mitosis because nimA temperature-sensitive mutants, blocked at mitotic entry, were unable to develop functional appressoria. Arresting the cell cycle after mitotic entry, by conditional inactivation of the Blocked-in-Mitosis 1 gene or expression of stabilized cyclinB-encoding alleles, did not impair appressorium differentiation, but instead prevented these cells from invading plant tissue. When considered together, these data suggest that appressorium-mediated plant infection is coordinated by three distinct cell cycle checkpoints that are necessary for establishment of plant disease.


Assuntos
Ciclo Celular , Fungos/patogenicidade , Oryza/microbiologia
13.
Methods Mol Biol ; 521: 3-17, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19563098

RESUMO

DNA replication is fundamental to cellular life on earth, and replication initiation provides the primary point of control over this process. Replication initiation in all organisms involves the interaction of initiator proteins with one or more origins of replication in the DNA, with subsequent regulated assembly of two replisome complexes at each origin, melting of the DNA, and primed initiation of DNA synthesis on leading and lagging strands. Archaea and Eukarya share homologous systems for DNA replication initiation, but differ in the complexity of these; Bacteria appear to have analogous, rather than homologous, mechanisms for replication initiation. This chapter provides an overview of current knowledge of initiation of chromosomal DNA replication in the three domains of life.


Assuntos
Replicação do DNA/genética , Replicação do DNA/fisiologia , Animais , Archaea/genética , Archaea/metabolismo , Bactérias/genética , Bactérias/metabolismo , Período de Replicação do DNA , DNA Arqueal/biossíntese , DNA Arqueal/genética , DNA Bacteriano/biossíntese , DNA Bacteriano/genética , DNA Fúngico/biossíntese , DNA Fúngico/genética , Humanos , Modelos Biológicos , Origem de Replicação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo
14.
BMC Evol Biol ; 9: 60, 2009 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-19292915

RESUMO

BACKGROUND: Yeast and animal cells require six mini-chromosome maintenance proteins (Mcm2-7) for pre-replication complex formation, DNA replication initiation and DNA synthesis. These six individual MCM proteins form distinct heterogeneous subunits within a hexamer which is believed to form the replicative helicase and which associates with the essential but non-homologous Mcm10 protein during DNA replication. In contrast Archaea generally only possess one MCM homologue which forms a homohexameric MCM helicase. In some eukaryotes Mcm8 and Mcm9 paralogues also appear to be involved in DNA replication although their exact roles are unclear. RESULTS: We used comparative genomics and phylogenetics to reconstruct the diversification of the eukaryotic Mcm2-9 gene family, demonstrating that Mcm2-9 were formed by seven gene duplication events before the last common ancestor of the eukaryotes. Mcm2-7 protein paralogues were present in all eukaryote genomes studied suggesting that no gene loss or functional replacements have been tolerated during the evolutionary diversification of eukaryotes. Mcm8 and 9 are widely distributed in eukaryotes and group together on the MCM phylogenetic tree to the exclusion of all other MCM paralogues suggesting co-ancestry. Mcm8 and Mcm9 are absent in some taxa, including Trichomonas and Giardia, and appear to have been secondarily lost in some fungi and some animals. The presence and absence of Mcm8 and 9 is concordant in all taxa sampled with the exception of Drosophila species. Mcm10 is present in most eukaryotes sampled but shows no concordant pattern of presence or absence with Mcm8 or 9. CONCLUSION: A multifaceted and heterogeneous Mcm2-7 hexamer evolved during the early evolution of the eukaryote cell in parallel with numerous other acquisitions in cell complexity and prior to the diversification of extant eukaryotes. The conservation of all six paralogues throughout the eukaryotes suggests that each Mcm2-7 hexamer component has an exclusive functional role, either by a combination of unique lock and key interactions between MCM hexamer subunits and/or by a range of novel side interactions. Mcm8 and 9 evolved early in eukaryote cell evolution and their pattern of presence or absence suggests that they may have linked functions. Mcm8 is highly divergent in all Drosophila species and may not provide a good model for Mcm8 in other eukaryotes.


Assuntos
Proteínas de Ciclo Celular/genética , Replicação do DNA , Evolução Molecular , Família Multigênica , Proteínas Nucleares/genética , Animais , Biologia Computacional , Drosophila/genética , Fungos/genética , Genômica , Filogenia , Alinhamento de Sequência , Análise de Sequência de Proteína
16.
Microbiology (Reading) ; 153(Pt 3): 887-97, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17322209

RESUMO

The fission yeast Schizosaccharomyces pombe is widely used as a model eukaryote for cell and molecular studies but little is known of natural genetic variation in this species. In order to obtain informative molecular markers, imperfect tandem repeats, identified through bioinformatic methods, were tested for length polymorphism in six wild-type strains of Sch. pombe isolated from different substrates and geographical locations in Africa, America, Asia and Europe. Of 26 loci tested, 21 were multi-allelic, consistent with tandem repeat copy number variation. Eleven of these polymorphic tandem repeats are in regions encoding intracellular proteins. Most of the protein-coding repeats are not sited within structured domains but have non-regular predicted structure; one has a repeat unit length corresponding to integer turns of a predicted amphipathic alpha-helix secondary structure, suggesting that this repeat may be tolerated because copy number mutations change alpha-helix length but not orientation within the protein structure. In contrast to the differences observed between natural isolates of Sch. pombe, genetic strains were found to be essentially isogenic: only two polymorphic loci were detected out of 26 minisatellites and five microsatellites tested in 16 strains, including a hypervariable microsatellite in the med15 gene. The polymorphic tandem repeat markers identified in this study will prove useful for DNA fingerprinting and molecular analysis of natural genetic variation in Sch. pombe isolates.


Assuntos
Impressões Digitais de DNA/métodos , DNA Fúngico/genética , Polimorfismo Genético , Schizosaccharomyces/classificação , Schizosaccharomyces/genética , Sequência de Bases , Análise por Conglomerados , Repetições Minissatélites/genética , Dados de Sequência Molecular , Schizosaccharomyces/isolamento & purificação , Sequências de Repetição em Tandem/genética
17.
Mol Biol Cell ; 14(9): 3876-87, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12972571

RESUMO

Using a cytological assay to monitor the successive chromatin association of replication proteins leading to replication initiation, we have investigated the function of fission yeast Cdc23/Mcm10 in DNA replication. Inactivation of Cdc23 before replication initiation using tight degron mutations has no effect on Mcm2 chromatin association, and thus pre-replicative complex (pre-RC) formation, although Cdc45 chromatin binding is blocked. Inactivating Cdc23 during an S phase block after Cdc45 has bound causes a small reduction in Cdc45 chromatin binding, and replication does not terminate in the absence of Mcm10 function. These observations show that Cdc23/Mcm10 function is conserved between fission yeast and Xenopus, where in vitro analysis has indicated a similar requirement for Cdc45 binding, but apparently not compared with Saccharomyces cerevisiae, where Mcm10 is needed for Mcm2 chromatin binding. However, unlike the situation in Xenopus, where Mcm10 chromatin binding is dependent on Mcm2-7, we show that the fission yeast protein is bound to chromatin throughout the cell cycle in growing cells, and only displaced from chromatin during quiescence. On return to growth, Cdc23 chromatin binding is rapidly reestablished independently from pre-RC formation, suggesting that chromatin association of Cdc23 provides a link between proliferation and competence to execute DNA replication.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ciclossomo-Complexo Promotor de Anáfase , Subunidade Apc8 do Ciclossomo-Complexo Promotor de Anáfase , Proteínas de Transporte/genética , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona , Clonagem Molecular , Replicação do DNA/fisiologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Componente 4 do Complexo de Manutenção de Minicromossomo , Modelos Moleculares , Proteínas Nucleares/genética , Ligação Proteica , Fase S/fisiologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Complexos Ubiquitina-Proteína Ligase
18.
J Exp Bot ; 54(383): 699-706, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12554713

RESUMO

Very little is known about the expression patterns in plants of genes that encode proteins involved in the initiation of DNA replication. Partial cDNA sequences that encode Cdc6 and Mcm3 in tobacco have been isolated. The sequences were used as probes in northern blots which suggested that, in the cell cycle of synchronized tobacco BY-2 cells, expression of CDC6 is confined to late G(1) and S-phase whereas the expression of MCM3 is not confined to any particular cell cycle phase. These data were confirmed and extended by real-time PCR measurements of mRNA abundance through the cell cycle. CDC6 exhibits a very clear peak of expression in S-phase whereas MCM3, expressed at a much lower level than CDC6, is not cell-cycle-regulated. These patterns of cell cycle gene expression resemble those found in the fission yeast Schizosaccharomyces pombe rather than those in budding yeast or mammalian cells.


Assuntos
Proteínas de Ciclo Celular/genética , Ciclo Celular/genética , Replicação do DNA/genética , Nicotiana/genética , Sequência de Aminoácidos , Proteínas de Arabidopsis/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Glucuronidase/genética , Glucuronidase/metabolismo , Dados de Sequência Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reação em Cadeia da Polimerase/métodos , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Homologia de Sequência de Aminoácidos , Nicotiana/citologia , Nicotiana/metabolismo
19.
Curr Genet ; 41(5): 342-8, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12185500

RESUMO

Schizosaccharomyces pombe Cdc23 is an essential DNA replication protein, conserved in eukaryotes and functionally homologous with Saccharomyces cerevisiae Dna43 (Mcm10). We sought evidence for interactions between Cdc23 and the MCM2-7 complex, a component of both the pre-replicative complex and the replication fork. Cdc23 shows genetic interactions with four MCM subunits: cdc23-M36 and cdc23-1E2 alleles both show synthetic phenotypes with mcm2 (cdc19-P1) and mcm6 (mis5-268), and cdc23-M36 is synthetically lethal with mcm4 (cdc21-K46) and with mcm5 (nda4-108). The wild-type cdc23 gene on multicopy plasmids can partially suppress temperature-dependent defects in mcm5 (nda4-108). Two-hybrid analysis demonstrates interactions at the protein-protein level between Cdc23 and Mcm4, Mcm5 and Mcm6. Cdc23 also interacts with four subunits of the Schizosaccharomyces pombe origin recognition complex (ORC) in yeast two-hybrid assay: Orc1, Orc2, Orc5 and Orc6. We found no evidence for interaction between Cdc23 and the MCM recruitment factor Cdc18 (the homologue of Saccharomyces cerevisiae Cdc6). Unlike Cdc18, Cdc23 mRNA shows no significant fluctuation in level through the cell cycle. These data suggest that fission yeast Cdc23 is an MCM-associated factor which has a role in the initiation of DNA replication.


Assuntos
Proteínas de Ciclo Celular/genética , Replicação do DNA , Proteínas de Saccharomyces cerevisiae , Schizosaccharomyces/genética , Fatores de Transcrição/metabolismo , Ciclossomo-Complexo Promotor de Anáfase , Subunidade Apc8 do Ciclossomo-Complexo Promotor de Anáfase , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Complexo de Reconhecimento de Origem , Schizosaccharomyces/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Complexos Ubiquitina-Proteína Ligase
20.
Yeast ; 19(6): 521-7, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11921100

RESUMO

Expression of the mei3 gene is sufficient to induce meiosis in the fission yeast Schizosaccharomyces pombe. The mei3 gene is located 0.64 Mb from the telomere of the left arm of Sz. pombe chromosome II. We have sequenced and analysed 107 kb of DNA from the mei3 genomic region. The sequence includes 14 known genes (bag1-B, csh3, dps1, gpt1, mei3, mfm3, pac1, prp31, rpl38-1, rpn3, rti1, spa1, spm1 and ubc4) and 26 other open reading frames (ORFs) longer than 100 codons: a density of one protein-coding gene per 2.7 kb. Twenty-one of the 40 ORFs (53%) have introns. In addition there is one lone Tf1 transposon long terminal repeat (LTR), tRNA(Trp) and tRNA(Ser) genes and a 5S rRNA gene. 14 of the novel ORFs show sequence similarities which suggest functions of their products, including a coatomer alpha-subunit, a catechol O-methyltransferase, protein kinase, asparagine synthetase, zinc metalloprotease, acetyltransferase, phosphatidylinositol 4-kinase, inositol polyphosphate phosphatase, GTPase-activating protein, permease, pre-mRNA splicing factor, 20S proteasome component and a thioredoxin-like protein. One predicted protein has similarity to the human Cockayne syndrome protein CSA and one with human GTPase XPA binding protein XAB1. Three ORFs are likely to code for proteins because they have sequence similarity with hypothetical proteins, three encode predicted coiled-coil proteins and four are sequence orphans.


Assuntos
Proteínas Fúngicas/genética , Genoma Fúngico , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces/genética , Cosmídeos , Meiose , Dados de Sequência Molecular , Fases de Leitura Aberta , Análise de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...