Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomater Sci ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980705

RESUMO

Healthcare associated infections (HCAI) represent a significant burden worldwide contributing to morbidity and mortality and result in substantial economic consequences equating to billions annually. Although the impacts of HCAI have been felt for many years, the coronavirus pandemic has had a profound effect, escalating rates of HCAI, even with extensive preventative measures such as vaccination, personal protective equipment, and deep cleaning regimes. Therefore, there is an urgent need for new solutions to mitigate this serious health emergency. In this paper, the fabrication of nitric oxide (NO) releasing dual action polymer coatings for use in healthcare applications is described. The coatings are doped with the NO donor S-nitroso-N-acetylpenicillamine (SNAP) and release high payloads of NO in a sustained manner for in excess of 50 hours. These coatings are extensively characterized in multiple biologically relevant solutions and the antibacterial/antiviral efficacy is studied. For the first time, we assess antibacterial activity in a time course study (1, 2, 4 and 24 h) in both nutrient rich and nutrient poor conditions. Coatings exhibit excellent activity against Pseudomonas aeruginosa and methicillin resistant Staphylococcus aureus (MRSA), with up to complete reduction observed over 24 hours. Additionally, when tested against SARS-CoV-2, the coatings significantly reduced active virus in as little as 10 minutes. These promising results suggest that these coatings could be a valuable addition to existing preventative measures in the fight against HCAIs.

2.
ACS Sens ; 8(5): 1882-1890, 2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37099014

RESUMO

A challenge of any biosensing technology is the detection of very low concentrations of analytes. The fluorescence interference contrast (FLIC) technique improves the fluorescence-based sensitivity by selectively amplifying, or suppressing, the emission of a fluorophore-labeled biomolecule immobilized on a transparent layer placed on top of a mirror basal surface. The standing wave of the reflected emission light means that the height of the transparent layer operates as a surface-embedded optical filter for the fluorescence signal. FLIC extreme sensitivity to wavelength is also its main problem: small, e.g., 10 nm range, variations of the vertical position of the fluorophore can translate in unwanted suppression of the detection signal. Herein, we introduce the concept of quasi-circular lenticular microstructured domes operating as continuous-mode optical filters, generating fluorescent concentric rings, with diameters determined by the wavelengths of the fluorescence light, in turn modulated by FLIC. The critical component of the lenticular structures was the shallow sloping side wall, which allowed the simultaneous separation of fluorescent patterns for virtually any fluorophore wavelength. Purposefully designed microstructures with either stepwise or continuous-slope dome geometries were fabricated to modulate the intensity and the lateral position of a fluorescence signal. The simulation of FLIC effects induced by the lenticular microstructures was confirmed by the measurement of the fluorescence profile for three fluorescent dyes, as well as high-resolution fluorescence scanning using stimulated emission depletion (STED) microscopy. The high sensitivity of the spatially addressable FLIC technology was further validated on a diagnostically important target, i.e., the receptor-binding domain (RBD) of the SARS-Cov2 via the detection of RBD:anti-S1-antibody.


Assuntos
COVID-19 , RNA Viral , Humanos , Microscopia de Fluorescência/métodos , SARS-CoV-2 , Corantes Fluorescentes/química
3.
ACS Mater Au ; 2(2): 190-203, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36855758

RESUMO

Nonhealing and chronic wounds represent a major problem for the quality of life of patients and have cost implications for healthcare systems. The pathophysiological mechanisms that prevent wound healing are usually multifactorial and relate to patient overall health and nutrition, vascularity of the wound bed, and coexisting infection/colonization. Bacterial infections are one of the predominant issues that can stall a wound, causing it to become chronic. Successful wound healing often depends on weeks or months of antimicrobial therapy, but this is problematic given the rise in multidrug-resistant bacteria. As such, alternatives to antibiotics are desperately needed to aid the healing of chronic, and even acutely infected wounds. Nitric oxide (NO) kills bacteria through a variety of mechanisms, and thus, bacteria have shown no tendency to develop resistance to NO as a therapeutic agent and therefore can be a good alternative to antibiotic therapy. In this paper, we report on the development of NO-releasing electrospun membranes fabricated from polycaprolactone (PCL)/gelatin blends and optimized to reduce bacterial infection. The NO payload in the membranes was directly related to the number of amines (and hence the amount of gelatin) in the blend. Higher NO payloads corresponded with a higher degree of antimicrobial efficacy. No cytotoxicity was observed for electrospun membranes, and an in vitro wound closure assay demonstrated closure within 16 h. The results presented here clearly indicate that these NO-releasing electrospun membranes hold significant promise as wound dressings due to their antimicrobial activity and biocompatibility.

4.
Int J Mol Sci ; 21(15)2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32756331

RESUMO

To improve the integration of a biomaterial with surrounding tissue, its surface properties may be modified by adsorption of biomacromolecules, e.g., fibrils. Whey protein isolate (WPI), a dairy industry by-product, supports osteoblastic cell growth. WPI's main component, ß-lactoglobulin, forms fibrils in acidic solutions. In this study, aiming to develop coatings for biomaterials for bone contact, substrates were coated with WPI fibrils obtained at pH 2 or 3.5. Importantly, WPI fibrils coatings withstood autoclave sterilization and appeared to promote spreading and differentiation of human bone marrow stromal cells (hBMSC). In the future, WPI fibrils coatings could facilitate immobilization of biomolecules with growth stimulating or antimicrobial properties.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Proteínas do Soro do Leite/farmacologia , Adsorção/efeitos dos fármacos , Desenvolvimento Ósseo/efeitos dos fármacos , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Proteínas do Leite/química , Proteínas do Leite/farmacologia , Osteoblastos/efeitos dos fármacos , Proteínas do Soro do Leite/química
5.
ACS Appl Mater Interfaces ; 12(20): 22433-22443, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32320193

RESUMO

Titanium implants in orthopedic applications can fail due to infection and impaired integration into the host. Most research efforts that facilitate osseointegration of the implant have not considered infection, and vice versa. Moreover, most infection control measures involve the use of conventional antibiotics which contributes to the global epidemic of antimicrobial resistance. Nitric oxide (NO) is a promising alternative to antibiotics, and while researchers have investigated NO releasing coatings, there are few reports on the function/robustness or the mechanism of NO release. Our comprehensive mechanistic study has allowed us to design, characterize, and optimize NO releasing coatings to achieve maximum antimicrobial efficacy toward bacteria with minimum cytotoxicity to human primary osteoblasts in vitro. As the antibiotic era is coming to an end and the future of infection control continues to demand new alternatives, the coatings described herein represent a promising therapeutic strategy for use in orthopedic surgeries.


Assuntos
Doadores de Óxido Nítrico/farmacologia , Óxido Nítrico/metabolismo , Osseointegração/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Próteses e Implantes , Titânio/química , Antibacterianos/farmacologia , Compostos Azo/farmacologia , Aderência Bacteriana/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/química , Humanos , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Silanos/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia , Molhabilidade
6.
Polymers (Basel) ; 11(12)2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31766551

RESUMO

As the current global threat of antimicrobial resistance (AMR) persists, developing alternatives to antibiotics that are less susceptible to resistance is becoming an urgent necessity. Recent advances in biomaterials have allowed for the development and fabrication of materials with discrete surface nanotopographies that can deter bacteria from adhering to their surface. Using binary polymer blends of polystyrene (PS), poly(methyl methacrylate) (PMMA) and polycaprolactone (PCL) and varying their relative concentrations, PS/PCL, PS/PMMA and PCL/PMMA polymer demixed thin films were developed with nanoisland, nanoribbon and nanopit topographies. In the PS/PCL system, PS segregates to the air-polymer interface, with the lower solubility PCL preferring the substrate-polymer interface. In the PS/PMMA and PCL/PMMA systems, PMMA prefers the air-polymer interface due to its greater solubility and lower surface energy. The anti-adhesion efficacy of the demixed films were tested against Pseudomonas aeruginosa (PA14). PS/PCL and PCL/PMMA demixed films showed a significant reduction in cell counts adhered on their surfaces compared to pure polymer control films, while no reduction was observed in the counts adhered on PS/PMMA demixed films. While the specific morphology did not affect the adhesion, a relationship between bacterial cell and topographical surface feature size was apparent. If the surface feature was smaller than the cell, then an anti-adhesion effect was observed; if the surface feature was larger than the cell, then the bacteria preferred to adhere.

7.
ACS Appl Mater Interfaces ; 11(41): 37491-37501, 2019 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-31532610

RESUMO

Microbial keratitis is a serious sight threatening infection affecting approximately two million individuals worldwide annually. While antibiotic eye drops remain the gold standard treatment for these infections, the significant problems associated with eye drop drug delivery and the alarming rise in antimicrobial resistance has meant that there is an urgent need to develop alternative treatments. In this work, a nitric oxide releasing contact lens gel displaying broad spectrum antimicrobial activity against two of the most common causative pathogens of microbial keratitis is described. The contact lens gel is composed of poly-ε-lysine (pεK) functionalized with nitric oxide (NO) releasing diazeniumdiolate moieties which enables the controlled and sustained release of bactericidal concentrations of NO at physiological pH over a period of 15 h. Diazeniumdiolate functionalization was confirmed by Fourier transform infrared (FTIR), and the concentration of NO released from the gels was determined by chemiluminescence. The bactericidal efficacy of the gels against Pseudomonas aeruginosa and Staphylococcus aureus was ascertained, and between 1 and 4 log reductions in bacterial populations were observed over 24 h. Additional cell cytotoxicity studies with human corneal epithelial cells (hCE-T) also demonstrated that the contact lens gels were not cytotoxic, suggesting that the developed technology could be a viable alternative treatment for microbial  keratitis.


Assuntos
Anti-Infecciosos , Lentes de Contato , Ceratite/tratamento farmacológico , Óxido Nítrico , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/crescimento & desenvolvimento , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/crescimento & desenvolvimento , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacologia , Epitélio Corneano/metabolismo , Epitélio Corneano/microbiologia , Epitélio Corneano/patologia , Humanos , Teste de Materiais , Óxido Nítrico/química , Óxido Nítrico/farmacologia
8.
ACS Appl Mater Interfaces ; 9(44): 38364-38372, 2017 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-29022348

RESUMO

Application of mesoporous silica nanoparticles (MSNs) as antifouling/antibacterial carriers is limited and specifically with a dual synergetic effect. In the present work, MSNs modified with quaternary ammonium salts (QASs) and loaded with the biocide Parmetol S15 were synthesized as functional fillers for antifouling/antibacterial coatings. From the family of the MSNs, MCM-48 was selected as a carrier because of its cubic pore structure, high surface area, and high specific pore volume. The QASs used for the surface modification of MCM-48 were dimethyloctadecyl[3-(trimethoxysilyl)propyl]ammonium chloride and dimethyltetradecyl[3-(triethoxysilyl)propyl]ammonium chloride. The QAS-modified MCM-48 reveals strong covalent bonds between the QAS and the surface of the nanoparticles. The surface functionalization was confirmed by Fourier transform infrared spectroscopy, thermogravimetric analysis, elemental analysis, and ζ-potential measurements. Additional loading of the QAS-modified MCM-48 with a commercially available biocide (Parmetol S15) resulted in a synergetic dual antibacterial/antifouling effect. Either loaded or unloaded QAS-modified MSNs exhibited high antibacterial performance confirming their dual activity. The QAS-modified MCM-48 loaded with the biocide Parmetol S15 killed all exposed bacteria after 3 h of incubation and presented 100% reduction at the antibacterial tests against Gram-negative and Gram-positive bacteria. Furthermore, the QAS-modified MCM-48 without Parmetol S15 presented 77-89% reduction against the exposed Gram-negative bacteria and 78-94% reduction against the exposed Gram-positive bacteria. In addition, the modified MCM-48 was mixed with coating formulations, and its antifouling performance was assessed in a field test trial in northern Red Sea. All synthesized paints presented significant antifouling properties after 5 months of exposure in real seawater conditions, and the dual antifouling effect of the nanoparticles was confirmed.


Assuntos
Nanopartículas , Antibacterianos , Bactérias Gram-Negativas , Compostos de Amônio Quaternário , Dióxido de Silício
9.
Polymers (Basel) ; 9(11)2017 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-30965904

RESUMO

The ability of nitric oxide (NO)-releasing polymer coatings to prevent biofilm formation is described. NO-releasing coatings on (poly(ethylene terephthalate) (PET) and silicone elastomer (SE)) were fabricated using aminosilane precursors. Pristine PET and SE were oxygen plasma treated, followed by immobilisation of two aminosilane molecules: N-(3-(trimethoxysilyl)propyl)diethylenetriamine (DET3) and N-(3-trimethoxysilyl)propyl)aniline (PTMSPA). N-diazeniumdiolate nitric oxide donors were formed at the secondary amine sites on the aminosilane molecules producing NO-releasing polymeric coatings. The NO payload and release were controlled by the aminosilane precursor, as DET3 has two secondary amine sites and PTMSPA only one. The antibacterial efficacy of these coatings was tested using a clinical isolate of Pseudomonas aeruginosa (PA14). All NO-releasing coatings in this study were shown to significantly reduce P. aeruginosa adhesion over 24 h with the efficacy being a function of the aminosilane modification and the underlying substrate. These NO-releasing polymers demonstrate the potential and utility of this facile coating technique for preventing biofilms for indwelling medical devices.

10.
J Mater Chem B ; 5(13): 2500-2510, 2017 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32264556

RESUMO

The linker-free covalent immobilization of polymers on surfaces has the potential to impart new properties and functions to surfaces for a wide range of applications. However, most current methods for the production of these surfaces involve multiple chemical steps and do not have a high degree of control over the chemical functionalities at the surface. A comprehensive study detailing the facile two-step covalent grafting of the antimicrobial peptide nisin onto polystyrene surfaces is reported. Functionalization is achieved using an atmospheric pressure plasma jet, and the reaction is monitored and compared with a standard wet chemical functionalization approach using a variety of analytical techniques. The reactive species produced by the atmospheric pressure plasma jet were analyzed by mass spectrometry and optical emission spectroscopy. The surface chemistry and topography of the functionalized surfaces were determined using contact angle measurements, Fourier infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy and atomic force microscopy respectively. Following surface analysis, the antimicrobial efficacy of the covalently grafted nisin against two major food borne pathogens (Staphylococcus aureus and Listeria monocytogenes) was assessed at two different pHs. The results demonstrated that a post-plasma treatment step after nisin deposition is required to covalently graft the peptide onto the surface. The covalent immobilization of nisin resulted in a significant reduction in bacterial counts within a short 30 minutes contact time. These surfaces were also significantly more antimicrobial compared to those prepared via a more traditional wet chemical approach indicating that the reported method could be a less expensive and less time consuming alternative.

11.
Langmuir ; 31(30): 8354-61, 2015 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-26161584

RESUMO

The efficiency of dynamic nanodevices using surface-immobilized protein molecular motors, which have been proposed for diagnostics, drug discovery, and biocomputation, critically depends on the ability to precisely control the motion of motor-propelled, individual cytoskeletal filaments transporting cargo to designated locations. The efficiency of these devices also critically depends on the proper function of the propelling motors, which is controlled by their interaction with the surfaces they are immobilized on. Here we use a microfluidic device to study how the motion of the motile elements, i.e., actin filaments propelled by heavy mero-myosin (HMM) motor fragments immobilized on various surfaces, is altered by the application of electrical loads generated by an external electric field with strengths ranging from 0 to 8 kVm(-1). Because the motility is intimately linked to the function of surface-immobilized motors, the study also showed how the adsorption properties of HMM on various surfaces, such as nitrocellulose (NC), trimethylclorosilane (TMCS), poly(methyl methacrylate) (PMMA), poly(tert-butyl methacrylate) (PtBMA), and poly(butyl methacrylate) (PBMA), can be characterized using an external field. It was found that at an electric field of 5 kVm(-1) the force exerted on the filaments is sufficient to overcome the frictionlike resistive force of the inactive motors. It was also found that the effect of assisting electric fields on the relative increase in the sliding velocity was markedly higher for the TMCS-derivatized surface than for all other polymer-based surfaces. An explanation of this behavior, based on the molecular rigidity of the TMCS-on-glass surfaces as opposed to the flexibility of the polymer-based ones, is considered. To this end, the proposed microfluidic device could be used to select appropriate surfaces for future lab-on-a-chip applications as illustrated here for the almost ideal TMCS surface. Furthermore, the proposed methodology can be used to gain fundamental insights into the functioning of protein molecular motors, such as the force exerted by the motors under different operational conditions.


Assuntos
Eletricidade , Miosinas/química , Propriedades de Superfície
12.
Langmuir ; 28(42): 15033-7, 2012 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-22988957

RESUMO

This contribution reports on the quantification of the parameters of the motility assays for actomyosin system using a quartz crystal microbalance (QCM). In particular, we report on the difference in the observed resonance frequency and dissipation of a quartz crystal when actin filaments are stationary as opposed to when they are motile. The changes in QCM measurements were studied for various polymer-coated surfaces functionalized with heavy meromyosin (HMM). The results of the QCM experiments show that the HMM-induced sliding velocity of actin filaments is modulated by a combination of the viscoelastic properties of the polymer layer including the HMM motors.


Assuntos
Actinas/química , Subfragmentos de Miosina/química , Polímeros/química , Técnicas de Microbalança de Cristal de Quartzo , Propriedades de Superfície
13.
Anal Chem ; 80(15): 6001-5, 2008 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-18543952

RESUMO

Conventional lateral flow immunoassays are based on labeled antibodies. In this paper we describe an alternative design based on gold nanoparticles labeled with haptens. The haptens are conjugated to gold nanoparticles by a method that allows the number per particle to be tuned to the point of maximum sensitivity. This leads to improvements compared with conventional lateral flow devices without relinquishing any of their advantages. In parallel assays for the environmental pollutant 2,4-dinitrophenol the alternative devices were 50% more sensitive.


Assuntos
Haptenos , Imunoensaio/normas , Nanopartículas Metálicas , 2,4-Dinitrofenol/análise , Poluentes Ambientais/análise , Ouro , Imunoensaio/métodos
14.
Anal Chem ; 79(11): 4215-21, 2007 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-17458937

RESUMO

The dependence of the optical properties of spherical gold nanoparticles on particle size and wavelength were analyzed theoretically using multipole scattering theory, where the complex refractive index of gold was corrected for the effect of a reduced mean free path of the conduction electrons in small particles. To compare these theoretical results to experimental data, gold nanoparticles in the size range of 5 to 100 nm were synthesized and characterized with TEM and UV-vis. Excellent agreement was found between theory and experiment. It is shown that the data produced here can be used to determine both size and concentration of gold nanoparticles directly from UV-vis spectra. Equations for this purpose are derived, and the precision of various methods is discussed. The major aim of this work is to provide a simple and fast method to determine size and concentration of nanoparticles.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Tamanho da Partícula , Espectrofotometria/métodos , Elétrons , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Ressonância de Plasmônio de Superfície
15.
Chem Commun (Camb) ; (41): 4251-3, 2007 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-18217596

RESUMO

Specific PCR products are detected with an antibody-free lateral-flow device by sandwiching them between reporter oligonucleotides covalently attached to gold nanoparticles (GNPs) and capture oligonucleotides covalently attached to a nitrocellulose chromatographic strip.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Ácidos Nucleicos/química , Oligonucleotídeos/química , Reação em Cadeia da Polimerase/instrumentação , Reação em Cadeia da Polimerase/métodos , Colódio/química , Fitas Reagentes , Sensibilidade e Especificidade
16.
Chem Commun (Camb) ; (24): 2804-5, 2004 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-15599415

RESUMO

The biospecificity of gold and silver nanoparticles, functionalized with known numbers of oligonucleotides, is demonstrated in colorimetric microbead assays for complementary and mismatch sequences.


Assuntos
Colorimetria/métodos , DNA/análise , DNA/genética , Ouro/química , Nanoestruturas/química , Oligonucleotídeos/química , Prata/química , Sequência de Bases , Microesferas , Oligonucleotídeos/genética , Análise Espectral
17.
Chem Commun (Camb) ; (10): 1156-7, 2004 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-15136816

RESUMO

A mean of one biotinylated dextran molecule per particle is conjugated to 15 nm gold nanoparticles, by a process of self-assembly, which depends on the relationship between dextran molecular weight and particle size.


Assuntos
Nanoestruturas/química , Biotinilação/métodos , Dextranos/análise , Dextranos/química , Peso Molecular , Nanoestruturas/análise , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...