Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 6576, 2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33753845

RESUMO

Since the first experimental observation of all-optical switching phenomena, intensive research has been focused on finding suitable magnetic systems that can be integrated as storage elements within spintronic devices and whose magnetization can be controlled through ultra-short single laser pulses. We report here atomistic spin simulations of all-optical switching in multilayered structures alternating n monolayers of Tb and m monolayers of Co. By using a two temperature model, we numerically calculate the thermal variation of the magnetization of each sublattice as well as the magnetization dynamics of [[Formula: see text]/[Formula: see text]] multilayers upon incidence of a single laser pulse. In particular, the condition to observe thermally-induced magnetization switching is investigated upon varying systematically both the composition of the sample (n,m) and the laser fluence. The samples with one monolayer of Tb as [[Formula: see text]/[Formula: see text]] and [[Formula: see text]/[Formula: see text]] are showing thermally induced magnetization switching above a fluence threshold. The reversal mechanism is mediated by the residual magnetization of the Tb lattice while the Co is fully demagnetized in agreement with the models developed for ferrimagnetic alloys. The switching is however not fully deterministic but the error rate can be tuned by the damping parameter. Increasing the number of monolayers the switching becomes completely stochastic. The intermixing at the Tb/Co interfaces appears to be a promising way to reduce the stochasticity. These results predict for the first time the possibility of TIMS in [Tb/Co] multilayers and suggest the occurrence of sub-picosecond magnetization reversal using single laser pulses.

2.
Nanotechnology ; 31(42): 425302, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32531768

RESUMO

The all-optical magnetization reversal of magnetic layers, by picosecond optical pulses, is of particular interest as it shows the potential for energy-efficient and fast magnetic tunnel junction (MTJ) elements. This approach requires memory elements that are optically and electronically accessible, for optical writing and electronic read-out. In this paper, we propose the integration of indium tin oxide (ITO) as a transparent conducting electrode for magnetic tunnel junctions in integrated spintronic-photonic circuits. To provide light with sufficient energy to the MTJ free layer and allow electrical read-out of the MTJ state, we successfully integrated indium tin oxide as a top transparent electrode. The study shows that ITO film deposition by physical vapor deposition with conditions such as high source power and low O2 flow achieves smooth and conductive thin films. Increase in grain size was associated with low resistivity. Deposition of 150 nm ITO at 300 W, O2 flow of 1 sccm and 8.10-3 mbar vacuum pressure results in 4.8 × 10-4 Ω.cm resistivity and up to 80% transmittance at 800 nm wavelength. The patterning of ITO using CH4/H2 chemistry in a reactive ion etch process was investigated showing almost vertical sidewalls for diameters down to 50 nm. The ITO based process flow was compared to a standard magnetic tunnel junctions fabrication process flow based on Ta hard mask. Electrical measurements validate that the proposed process based on ITO results in properties equivalent to the standard process. We also show electrical results of magnetic tunnel junctions having all-optical switching top electrode fabricated with ITO for optical access. The developed ITO process flow shows very promising initial results and provides a way to fabricate these new devices to integrate all-optical switching magnetic tunnel junctions with electronic and photonic elements.

3.
Sci Rep ; 10(1): 5211, 2020 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-32251329

RESUMO

Ever since the first observation of all-optical switching of magnetization in the ferrimagnetic alloy GdFeCo using femtosecond laser pulses, there has been significant interest in exploiting this process for data-recording applications. In particular, the ultrafast speed of the magnetic reversal can enable the writing speeds associated with magnetic memory devices to be potentially pushed towards THz frequencies. This work reports the development of perpendicular magnetic tunnel junctions incorporating a stack of Tb/Co nanolayers whose magnetization can be all-optically controlled via helicity-independent single-shot switching. Toggling of the magnetization of the Tb/Co electrode was achieved using either 60 femtosecond-long or 5 picosecond-long laser pulses, with incident fluences down to 3.5 mJ/cm2, for Co-rich compositions of the stack either in isolation or coupled to a CoFeB-electrode/MgO-barrier tunnel-junction stack. Successful switching of the CoFeB-[Tb/Co] electrodes was obtained even after annealing at 250 °C. After integration of the [Tb/Co]-based electrodes within perpendicular magnetic tunnel junctions yielded a maximum tunneling magnetoresistance signal of 41% and RxA value of 150 Ωµm2 with current-in-plane measurements and ratios between 28% and 38% in nanopatterned pillars. These results represent a breakthrough for the development of perpendicular magnetic tunnel junctions controllable using single laser pulses, and offer a technologically-viable path towards the realization of hybrid spintronic-photonic systems featuring THz switching speeds.

4.
Channels (Austin) ; 2(3): 191-201, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18836298

RESUMO

Almost all lipid-exposed transmembrane domains of integral proteins contain aromatic residues flanking the hydrophobic segment of the domains. These residues generally reside close to the carbonyl region of the membrane, and several structural and functional roles have been associated to these residues. Although the roles and physicochemical reasons for aromatic preference have been extensively studied using model systems, few studies have been done in a native membrane system. To gain insight about the mechanistic implication for this aromatic preference, we selected position alpha F426 of the muscle-type nicotinic acetylcholine receptor (nAChR). alpha F426 is a lipid-exposed residue at the extracellular segment of the alpha M4 transmembrane domain and is highly conserved among different nAChR subunits and species. We used site-directed mutagenesis, alpha-Bungarotoxin-binding assay, and two-electrodes voltage clamp in Xenopus laevis oocytes to characterize mutations at position alpha F426, which impart different physicochemical properties like volume, polarity, hydrogen bonds, aromaticity and net electrical charge. All mutations except the aromatic residues resulted in a significant reduction of the nAChR cell-surface levels and the macroscopic currents to acetylcholine. These results suggest that position alpha F426 contributes to structural stability and open-close transitions of the nAChR. Finally, the present study also provides information about how intermolecular interactions at position alpha 426 modulate open-close transitions of the nAChR.


Assuntos
Hidrocarbonetos/química , Receptores Nicotínicos/química , Água/química , Aminoácidos/química , Animais , Bungarotoxinas/química , Membrana Celular/metabolismo , Humanos , Lipídeos/química , Camundongos , Modelos Biológicos , Modelos Moleculares , Conformação Molecular , Mutagênese Sítio-Dirigida , Receptores Nicotínicos/metabolismo , Xenopus laevis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...