Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(2)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38255448

RESUMO

This research explores discrete element method analysis to investigate the wear of NiTi Sand Screens in comparison to traditional materials. The study utilized Altair EDEM v2022.2 software and employed Oka and Archard models to simulate the wear behavior of Nitinol, a well-established Shape Memory Alloy (SMA). The mechanical properties considered include Poisson's ratio, solid density, shear modulus, and Young modulus. Results indicate significantly higher wear values and deformations with the Oka model compared to negligible wear with the Archard model. The Oka model's emphasis on impact as the primary wear mechanism, supported by high normal cumulative energy, better represents sand screen wear phenomena. Additionally, this study indicates that factors such as particle size distribution and normal and tangential cumulative contact energy hold potential as predictors of wear response and characteristics. The Oka model demonstrated that NiTi exhibited reduced wear losses compared to SUS630 and Cr-Mn white cast iron, both of which are recognized for their high toughness when subjected to an impact load. Experimental analysis validated the simulation findings with morphological and graphical erosion plots. The limitation of observing the shape memory effect through DEM (discrete element method) simulation was acknowledged. Recommendations include characterizing post-wear microstructural changes, exploring the influence of temperature on wear behavior, and further research to refine wear models and understand SMA sand screen responses.

2.
Sci Rep ; 14(1): 1961, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38263240

RESUMO

To simulate the bending behaviour of paddy straw at varied moisture contents after crop harvesting, we created a flexible paddy straw specimen model based on the Hertz-Mindlin with parallel contact bonding model using the discrete element model (DEM) approach. The research presented in this study aims to investigate a new approach called Definitive Screening Design (DSD) for parameterizing and screening the most significant parameters of the DEM model. This investigation will specifically focus on the three-point bending test as a means of parameterization, and the shear plate test will be used for validation purposes. In addition, the most influential DEM parameters were optimized using another Design of Experiments approach called Central Composite Design. The findings from the DSD indicated that parameters such as bonded disk scale, normal stiffness, and shear stiffness have the highest impact on the bending force, while the coefficient of static friction (Straw-Steel) has the least effect. The three bonding parameters were respectively calibrated with the loading rate (0.42, 0.5, and 0.58 mm s-1) and a good agreement between actual and simulated shear force at moisture content M1-35 ± 3.4%, M2-24 ± 2.2% and M3-17 ± 2.6%. Modelled stem helps simulate the straw with low error and increases the accuracy of the simulation. The validated model, with an average relative error of 5.43, 7.63, and 8.86 per cent, produced reasonable agreement between measured and simulated shear force value and loading rate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA