Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Immunol ; 9(91): eabq6930, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38215193

RESUMO

The thymus is a primary lymphoid organ that is essential for the establishment of adaptive immunity through generation of immunocompetent T cells. In response to various stress signals, the thymus undergoes acute but reversible involution. However, the mechanisms governing its recovery are incompletely understood. Here, we used a dexamethasone-induced acute thymic involution mouse model to investigate how thymic hematopoietic cells (excluding T cells) contribute to thymic regeneration. scRNA-seq analysis revealed marked transcriptional and cellular changes in various thymic populations and highlighted thymus-resident innate lymphoid cells type 2 (ILC2) as a key cell type involved in the response to damage. We identified that ILC2 are activated by the alarmins IL-25 and IL-33 produced in response to tissue damage by thymic tuft cells and fibroblasts, respectively. Moreover, using mouse models deficient in either tuft cells and/or IL-33, we found that these alarmins are required for effective thymus regeneration after dexamethasone-induced damage. We also demonstrate that upon their damage-dependent activation, thymic ILC2 produce several effector molecules linked to tissue regeneration, such as amphiregulin and IL-13, which in turn promote thymic epithelial cell differentiation. Collectively, our study elucidates a previously undescribed role for thymic tuft cells and fibroblasts in thymus regeneration through activation of the type 2 immune response.


Assuntos
Imunidade Inata , Interleucina-33 , Camundongos , Animais , Linfócitos , Células em Tufo , Alarminas , Modelos Animais de Doenças , Fibroblastos , Dexametasona/farmacologia
2.
J Exp Med ; 218(11)2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34477806

RESUMO

The autoimmune regulator (AIRE) is essential for the establishment of central tolerance and prevention of autoimmunity. Interestingly, different AIRE mutations cause autoimmunity in either recessive or dominant-negative manners. Using engineered mouse models, we establish that some monoallelic mutants, including C311Y and C446G, cause breakdown of central tolerance. By using RNAseq, ATACseq, ChIPseq, and protein analyses, we dissect the underlying mechanisms for their dominancy. Specifically, we show that recessive mutations result in a lack of AIRE protein expression, while the dominant mutations in both PHD domains augment the expression of dysfunctional AIRE with altered capacity to bind chromatin and induce gene expression. Finally, we demonstrate that enhanced AIRE expression is partially due to increased chromatin accessibility of the AIRE proximal enhancer, which serves as a docking site for AIRE binding. Therefore, our data not only elucidate why some AIRE mutations are recessive while others dominant, but also identify an autoregulatory mechanism by which AIRE negatively modulates its own expression.


Assuntos
Homeostase/genética , Mutação/genética , Fatores de Transcrição/genética , Animais , Autoimunidade/genética , Cromatina/genética , Dissecação/métodos , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Modelos Animais , Proteína AIRE
3.
Chemosens Percept ; 13(2): 123-131, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32968473

RESUMO

INTRODUCTION: Women's olfactory perception varies across the menstrual cycle. The influence of oral contraceptives on this variability remains unclear. METHODS: To further estimate this, we assessed discrimination performance for both body odors and ordinary odorants in 36 women, 18 naturally ovulating, and 18 using oral contraceptives. Each participant was tested once a week over the course of a month, and data was then parsed into menstrual phases. RESULTS: In naturally ovulating women, at the transition from follicular to luteal phases, there was a decline of 19% (p = 0.003) in olfactory discrimination of body odors but not ordinary odorants. In turn, in women using oral contraceptives, only at a later time of the month, at a point corresponding to the late luteal phase and shift from post-ovulation to pre-menstruation, was there a decline of 20% (p = 0.002) in olfactory discrimination performance. Moreover, when we reorganized the data from women using oral contraceptives in order to separately assess the contraceptive withdrawal period (the few days off pills), we observed a 23% reduction (p = 0.01) in discrimination accuracy of body odors but not ordinary odorants during this time alone. CONCLUSIONS: Women have reduced ability to discriminate body odors during the withdrawal period of oral contraception. IMPLICATIONS: If women indeed consider men's body odor in their mate selections, then the oral contraception withdrawal period may not be the best time to make such decisions.

4.
Nat Commun ; 8(1): 1524, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-29142256

RESUMO

In spite of recent advances in proteomics, quantitative analyses of protein-protein interactions (PPIs) or post-translational modifications (PTMs) in rare cell populations remain challenging. This is in particular true for analyses of rare immune and/or stem cell populations that are directly isolated from humans or animal models, and which are often characterized by multiple surface markers. To overcome these limitations, here we have developed proximity ligation imaging cytometry (PLIC), a protocol for proteomic analysis of rare cells. Specifically, by employing PLIC on medullary thymic epithelial cells (mTECs), which serve as a paradigm for a rare immune population, we demonstrate that PLIC overcomes the inherent limitations of conventional proteomic approaches and enables a high-resolution detection and quantification of PPIs and PTMs at a single cell level.


Assuntos
Células Epiteliais/metabolismo , Proteômica/métodos , Timo/metabolismo , Animais , Células Cultivadas , Células Epiteliais/imunologia , Humanos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ligação Proteica , Processamento de Proteína Pós-Traducional , Análise de Célula Única/métodos , Timo/citologia , Timo/imunologia
5.
Nat Immunol ; 16(7): 737-45, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26006015

RESUMO

Aire is a transcriptional regulator that induces the promiscuous expression of thousands of tissue-restricted antigens (TRAs) in medullary thymic epithelial cells (mTECs), a step critical for the induction of immunological self-tolerance. Studies have offered molecular insights into how Aire operates, but more comprehensive understanding of this process still remains elusive. Here we found abundant expression of the protein deacetylase Sirtuin-1 (Sirt1) in mature Aire(+) mTECs, wherein it was required for the expression of Aire-dependent TRA-encoding genes and the subsequent induction of immunological self-tolerance. Our study elucidates a previously unknown molecular mechanism for Aire-mediated transcriptional regulation and identifies a unique function for Sirt1 in preventing organ-specific autoimmunity.


Assuntos
Tolerância Central/imunologia , Sirtuína 1/imunologia , Fatores de Transcrição/imunologia , Ativação Transcricional/imunologia , Acetilação , Animais , Antígenos/imunologia , Tolerância Central/genética , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Citometria de Fluxo , Células HEK293 , Humanos , Immunoblotting , Subunidade gama Comum de Receptores de Interleucina/deficiência , Subunidade gama Comum de Receptores de Interleucina/genética , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Camundongos Transgênicos , Análise de Sequência com Séries de Oligonucleotídeos , Especificidade de Órgãos/imunologia , Ligação Proteica/imunologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sirtuína 1/genética , Sirtuína 1/metabolismo , Timo/citologia , Timo/imunologia , Timo/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma/imunologia , Proteína AIRE
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...