Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 25(40): 405704, 2014 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-25213658

RESUMO

Carbon nanotube (CNT) aerogel sheets produce smooth-spectra sound over a wide frequency range (1-10(5) Hz) by means of thermoacoustic (TA) sound generation. Protective encapsulation of CNT sheets in inert gases between rigid vibrating plates provides resonant features for the TA sound projector and attractive performance at needed low frequencies. Energy conversion efficiencies in air of 2% and 10% underwater, which can be enhanced by further increasing the modulation temperature. Using a developed method for accurate temperature measurements for the thin aerogel CNT sheets, heat dissipation processes, failure mechanisms, and associated power densities are investigated for encapsulated multilayered CNT TA heaters and related to the thermal diffusivity distance when sheet layers are separated. Resulting thermal management methods for high applied power are discussed and deployed to construct efficient and tunable underwater sound projector for operation at relatively low frequencies, 10 Hz-10 kHz. The optimal design of these TA projectors for high-power SONAR arrays is discussed.

2.
Artigo em Inglês | MEDLINE | ID: mdl-22293740

RESUMO

This paper proposes an L-shaped piezoelectric motor consisting of two piezoelectric bimorphs of different lengths arranged perpendicularly to each other. The coupling of the bending vibration mode of the bimorphs results in an elliptical motion at the tip. A detailed finite element model was developed to optimize the dimensions of bimorph to achieve an effective coupling at the resonance frequency of 246 Hz. The motor was characterized by developing rotational and linear stages. The linear stage was tested with different friction contact surfaces and the maximum velocity was measured to be 12 mm/s. The rotational stage was used to obtain additional performance characteristics from the motor: maximum velocity of 120 rad/s, mechanical torque of 4.7 × 10-(5) N·m, and efficiency of 8.55%.

3.
Artigo em Inglês | MEDLINE | ID: mdl-22293741

RESUMO

This paper develops an analytical model for an L-shaped piezoelectric motor. The motor structure has been described in detail in Part I of this study. The coupling of the bending vibration mode of the bimorphs results in an elliptical motion at the tip. The emphasis of this paper is on the development of a precise analytical model which can predict the dynamic behavior of the motor based on its geometry. The motor was first modeled mechanically to identify the natural frequencies and mode shapes of the structure. Next, an electromechanical model of the motor was developed to take into account the piezoelectric effect, and dynamics of L-shaped piezoelectric motor were obtained as a function of voltage and frequency. Finally, the analytical model was validated by comparing it to experiment results and the finite element method (FEM).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...