Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 13(3)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38539805

RESUMO

Thrombotic microangiopathy has been identified as a dominant mechanism for increased mortality and morbidity in coronavirus disease 2019 (COVID-19). In the context of severe COVID-19, patients may develop immunothrombosis within the microvasculature of the lungs, which contributes to the development of acute respiratory distress syndrome (ARDS), a leading cause of death in the disease. Immunothrombosis is thought to be mediated in part by increased levels of cytokines, fibrin clot formation, and oxidative stress. Glutathione (GSH), a well-known antioxidant molecule, may have therapeutic effects in countering this pathway of immunothrombosis as decreased levels of (GSH) have been associated with increased viral replication, cytokine levels, and thrombosis, suggesting that glutathione supplementation may be therapeutic for COVID-19. GSH supplementation has never been explored as a means of treating COVID-19. This study investigated the effectiveness of liposomal glutathione (GSH) as an adjunctive therapy for peripheral blood mononuclear cells (PBMC) treated with SARS CoV-2 spike protein. Upon the addition of GSH to cell cultures, cytokine levels, fibrin clot formation, oxidative stress, and intracellular GSH levels were measured. The addition of liposomal-GSH to PBMCs caused a statistically significant decrease in cytokine levels, fibrin clot formation, and oxidative stress. The addition of L-GSH to spike protein and untreated PBMCs increased total intracellular GSH, decreased IL-6, TGF-beta, and TNF-alpha levels, decreased oxidative stress, as demonstrated through MDA, and decreased fibrin clot formation, as detected by fluorescence microscopy. These findings demonstrate that L-GSH supplementation within a spike protein-treated PBMC cell culture model reduces these factors, suggesting that GSH supplementation should be explored as a means of reducing mediators of immunothrombosis in COVID-19.

2.
Antioxidants (Basel) ; 12(7)2023 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-37507915

RESUMO

Glutathione (GSH) is an important intracellular antioxidant responsible for neutralizing reactive oxygen species (ROS). Our laboratory previously demonstrated that the oral administration of liposomal GSH improves immune function against mycobacterium infections in healthy patients along with patients with HIV and Type 2 diabetes. We aim to determine if the topical application of a glutathione-cyclodextrin nanoparticle complex (GSH-CD) confers a therapeutic effect against mycobacterium infections. In our study, healthy participants received either topical GSH-CD (n = 15) or placebo (n = 15) treatment. Subjects were sprayed four times twice a day for three days topically on the abdomen. Blood draws were collected prior to application, and at 1, 4, and 72 h post-initial topical application. GSH, malondialdehyde (MDA), and cytokine levels were assessed in the processed blood samples of study participants. Additionally, whole blood cultures from study participants were challenged with Mycobacterium avium (M. avium) infection in vitro to assess mycobacterium survival post-treatment. Topical GSH-CD treatment was observed to elevate GSH levels in peripheral blood mononuclear cells (PBMCs) and red blood cells and decrease MDA levels in PBMCs 72 h post-treatment. An increase in plasma IL-2, IFN-γ, IL-12p70, and TNF-α was observed at 72 h post-topical GSH-CD treatment. Enhanced mycobacterium clearance was observed at 4 h and 72 h post-topical GSH-CD treatment. Overall, topical GSH-CD treatment was associated with improved immune function against M. avium infection. The findings of this pilot study suggest GSH-cyclodextrin complex formulation can be used topically as a safe alternative mode of GSH delivery in the peripheral blood.

3.
Front Cell Infect Microbiol ; 11: 657775, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34150674

RESUMO

The World Health Organization (WHO) has identified type 2 diabetes (T2DM) as a neglected, important, and re-emerging risk factor for tuberculosis (TB), especially in low and middle-income countries where TB is endemic. In this clinical trial study, oral liposomal glutathione supplementation (L-GSH) or placebo was given to individuals with T2DM to investigate the therapeutic effects of L-GSH supplementation. We report that L-GSH supplementation for 3 months in people with T2DM was able to reduce the levels of oxidative stress in all blood components and prevent depletion of glutathione (GSH) in this population known to be GSH deficient. Additionally, L-GSH supplementation significantly reduced the burden of intracellular mycobacteria within in vitro granulomas generated from peripheral blood mononuclear cells (PBMCs) of T2DM subjects. L-GSH supplementation also increased the levels of Th1-associated cytokines, IFN-γ, TNF-α, and IL-2 and decreased levels of IL-6 and IL-10. In conclusion our studies indicate that oral L-GSH supplementation in individuals with T2DM for three months was able to maintain the levels of GSH, reduce oxidative stress, and diminish mycobacterial burden within in vitro generated granulomas of diabetics. L-GSH supplementation for 3 months in diabetics was also able to modulate the levels of various cytokines.


Assuntos
Diabetes Mellitus Tipo 2 , Mycobacterium bovis , Mycobacterium tuberculosis , Vacina BCG , Citocinas , Glutationa , Humanos , Imunidade , Leucócitos Mononucleares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...