Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 74(1): 148-53, 2009 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-19560396

RESUMO

The photophysical properties of the 5-(4-pyridyl)-10,15,20-tri(4-methyloxyphenyl)porphyrins covalently linked to polyethylene glycol - PEG of different molecular weights (35000, 20000 and 8000) dissolved in dimethylsulfoxide were studied. The singlet and triplet states of the porphyrin species behavior were discussed in terms of fluorescence and thermal relaxation processes. The absorption, fluorescence and photothermal experiments showed that in the porphyrins linked to the PEG systems in dimethylsulfoxide the dye moieties occur in weakly interacting dimers. The triplet state enhancement in the 5-(4-pyridyl)-10,15,20-tri(4-methyloxyphenyl)porphyrins covalently linked to PEG was discussed. It was shown that even that the weak interaction of the porphyrin species in the covalent systems with PEG is not detectable by the absorption and only slightly by fluorescence, it is possible to be performed by the complementary spectroscopic methods like photoacoustics and photothermal time resolved spectroscopy.


Assuntos
Corantes/química , Polímeros/química , Porfirinas/química , Piridinas/química , Absorção , Corantes/síntese química , Ligação de Hidrogênio , Modelos Biológicos , Fotoquímica , Polietilenoglicóis/química , Polímeros/metabolismo , Porfirinas/síntese química , Porfirinas/metabolismo , Espectrometria de Fluorescência/métodos , Termogravimetria/métodos
2.
J Am Chem Soc ; 129(46): 14240-50, 2007 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-17958421

RESUMO

Bichromophoric molecules can support two spatially separated excited states simultaneously and thus provide novel pathways for electronic state relaxation. Exciton fission, where absorption of a single photon leads to two triplet states, is a potentially useful example of such a pathway. In this paper, a detailed study of exciton fission in three novel phenylene-linked bis(tetracene) molecules is presented. Their spectroscopy is analyzed in terms of a three-state kinetic model in which the singlet excited state can fission into a triplet pair state, which in turn undergoes recombination on a time scale longer than the molecule's radiative lifetime. This model allows us to fit both the prompt and delayed fluorescence decay data quantitatively. The para-phenylene linked bis(tetracene) molecules 1,4-bis(tetracen-5-yl)benzene (1) and 4,4'-bis(tetracen-5-yl)biphenylene (2) show intramolecular exciton fission with yields of approximately 3%, whereas no delayed fluorescence is observed for tetracene or the meta-linked molecule 1,3-bis(tetracen-5-yl)benzene 3. Analysis of the temperature-dependent fluorescence dynamics yields activation energies for fission of (10.0 +/- 0.6) kJ/mol for 1 and (4.1 +/- 0.5) kJ/mol for 2, with Arrhenius prefactors of (1.48 +/- 0.04) x 10(8) s(-1) for 1 and (1.72 +/- 0.02) x 10(7) s(-1) for 2. The observed trends in activation energies are reproduced by ab initio calculations of the independently optimized singlet and triplet energies. The calculations indicate that electronic coupling between the two tetracene units is primarily through-bond, allowing differences in fission rates to be qualitatively explained in terms of the linker structure as well. Our results show that it is important to consider the effects of the linker structure on both energy relaxation and electronic coupling in bichromophoric molecules. This study provides insight into the structural and energetic factors that should be taken into account in the design of exciton fission molecules for possible solar cell applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...