Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 11: 879, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32714345

RESUMO

Growth retardation and stress-induced premature plant senescence are accompanied by a severe yield reduction and raise a major agro-economic concern. To improve biomass and yield in agricultural crops under mild stress conditions, the survival must be changed to productivity mode. Our previous successful attempts to delay premature senescence and growth inhibition under abiotic stress conditions by autoregulation of cytokinins (CKs) levels constitute a generic technology toward the development of highly productive plants. Since this technology is based on the induction of CKs synthesis during the age-dependent senescence phase by a senescence-specific promoter (SARK), which is not necessarily regulated by abiotic stress conditions, we developed autoregulating transgenic plants expressing the IPT gene specifically under abiotic stress conditions. The Arabidopsis promoter of the stress-induced metallothionein gene (AtMT) was isolated, fused to the IPT gene and transformed into tobacco plants. The MT:IPT transgenic tobacco plants displayed comparable elevated biomass productivity and maintained growth under drought conditions. To decipher the role and the molecular mechanisms of CKs in reverting the survival transcriptional program to a sustainable plant growth program, we performed gene expression analysis of candidate stress-related genes and found unexpectedly clear downregulation in the CK-overproducing plants. We also investigated kinase activity after applying exogenous CKs to tobacco cell suspensions that were grown in salinity stress. In-gel kinase activity analysis demonstrated CK-dependent deactivation of several stress-related kinases including two of the MAPK components, SIPK and WIPK and the NtOSAK, a member of SnRK2 kinase family, a key component of the ABA signaling cascade. A comprehensive phosphoproteomics analysis of tobacco cells, treated with exogenous CKs under salinity-stress conditions indicated that >50% of the identified phosphoproteins involved in stress responses were dephosphorylated by CKs. We hypothesize that upregulation of CK levels under stress conditions desensitize stress signaling cues through deactivation of kinases that are normally activated under stress conditions. CK-dependent desensitization of environmental stimuli is suggested to attenuate various pathways of the avoidance syndrome including the characteristic growth arrest and the premature senescence while allowing normal growth and metabolic maintenance.

2.
Tree Physiol ; 31(5): 519-30, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21571726

RESUMO

Olive (Olea europaea) has a very high tendency for year-to-year deviation in yield (alternate bearing), which has a negative economic impact on the olive oil industry. Among possible reasons for alternate bearing, depletion of stored carbohydrates (CHO) during the On-year (high yield) has often been mentioned. The objective of the present study was to verify the role of CHO reserves, as a cause or effect, in the alternate bearing of intensively cultivated olives. A monthly survey of soluble sugar and starch concentrations in the leaves, branches, bark and roots of On- and Off-trees (cv. Barnea) was carried out during a complete reproductive cycle from November 2005 to October 2006. Carbohydrate concentration in the sapwood was determined in January, as well as an estimate of whole-tree biomass. The trunk and limbs possess the largest portion of CHO reserves. The influence of reduced fruit load on CHO reserves was also investigated. Starch, mannitol and sucrose concentrations increased from December to March in all tissues, and then declined along with fruit development. Leaves, branches and bark have a significant role in CHO storage, whereas roots accumulated the lowest CHO concentrations. However, fluctuations in reserve content suggested considerable involvement of roots in the CHO budget. Nevertheless, there were no meaningful differences in the annual pattern of CHO concentration between On- and Off-trees. Even a 75-100% reduction in fruit number brought about only a minor, sluggish increase in CHO content, though this was more pronounced in the roots. Carbohydrate reserves were not depleted, even under maximum demands for fruit and oil production. It is concluded that in olives, the status of CHO reserves is not a yield determinant. However, they may play a significant role in the olive's survival strategy, ensuring tree recovery in the unpredictable semiarid Mediterranean environment. This suggests that CHO reserves in olive act like an active sink, challenging the common concept regarding the regulation of CHO reserves in plants.


Assuntos
Metabolismo dos Carboidratos , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/metabolismo , Olea/crescimento & desenvolvimento , Olea/metabolismo , Israel , Manitol/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/metabolismo , Estações do Ano , Amido/metabolismo , Sacarose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...