Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 27(26): 37481-37493, 2019 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-31878527

RESUMO

We report design and experimental verification of narrowband mid-infrared optical filters with transmission characteristics that are practically constant over a wide range of incident angles. The filter employs a dense array of dielectric resonant cavities in a metal film, where the transmission of each cavity depends upon localized rather than travelling fields, making the filter fundamentally angle-independent. We show experimentally a transmission around 90% from normal incidence up to 60°. Simulations show that the filter becomes polarization-independent when geometry of the cavities is azimuthally symmetric.

2.
ACS Omega ; 4(4): 6436-6442, 2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-31459777

RESUMO

Conducting polymer actuators have shown wide application prospects in the field of biomedical sensors and micro-/nanorobotics. In order to explore more applications in biomedical sensing and robotics, it is essential to understand the actuator static behavior from an engineering perspective, before incorporating them into a design. In this article, we have established the mathematical model of a trilayer polypyrrole (PPy) cantilever actuator and validated it experimentally. The model helps in enhancing the efficiency and in improving the performance, predictability, and control of the actuator. The thermal expansion analogy, which is similar to volume change of the multilayer PPy actuator due to ion migration, has been considered to develop a mathematical model in COMSOL Multiphysics. To further validate the actuator deformation predicted by the mathematical modeling, a multilayer PPy actuator was fabricated by electrochemical synthesis and the experimentally determined deflection of the actuator was compared to simulation data. Both the theoretical and experimental results depict that the model is effective for predicting the bending behavior of multilayer PPy actuators at different input voltages.

3.
J Biomed Opt ; 24(4): 1-7, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31028693

RESUMO

Given that breast cancer is the second leading cause of cancer-related deaths among women in the United States, it is necessary to continue improving the sensitivity and specificity of breast imaging systems that diagnose breast lesions. Photoacoustic (PA) imaging can provide functional information during in vivo studies and can augment the structural information provided by ultrasound (US) imaging. A full-ring, all-reflective, illumination system for photoacoustic tomography (PAT) coupled to a full-ring US receiver is developed and tested. The US/PA tomography system utilizes a cone mirror and conical reflectors to optimize light delivery for PAT imaging and has the potential to image objects that are placed within the ring US transducer. The conical reflector used in this system distributes the laser energy over a circular cross-sectional area, thereby reducing the overall fluence. This, in turn, allows the operator to increase the laser energy achieving better cross-sectional penetration depth. A proof-of-concept design utilizing a single cone mirror and a parabolic reflector is used for imaging cylindrical phantoms with light-absorbing objects. For the given phantoms, it has been shown that there was no restriction in imaging a given targeted cross-sectional area irrespective of vertical depth, demonstrating the potential of mirror-based, ring-illuminated PAT system. In addition, the all-reflective ring illumination method shows a uniform PA signal across the scanned cross-sectional area.


Assuntos
Técnicas Fotoacústicas , Tomografia , Ultrassonografia Mamária , Desenho de Equipamento , Imagens de Fantasmas , Técnicas Fotoacústicas/instrumentação , Técnicas Fotoacústicas/métodos , Tomografia/instrumentação , Tomografia/métodos , Transdutores , Ultrassonografia Mamária/instrumentação , Ultrassonografia Mamária/métodos
4.
Opt Express ; 24(6): 5699-708, 2016 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-27136767

RESUMO

The concept of local field enhancement using conductor-gap-dielectric-substrate (CGDS) waveguide structure is proposed. The dispersion equation is derived analytically and solved numerically. The solution of the dispersion equation reveals the anti-crossing behavior of coupled modes. the optimal gap layer thickness and the coupling length of the guided modes are obtained. The mechanism of the CGDS works as follows: Light waves are guided by conventional low-loss dielectric waveguides and, upon demand, they are transformed into highly confined plasmonic modes with strong local field enhancement, and get transformed back into low-loss dielectric modes. As an example, in a representative CGDS structure, the optimal plasmonic gap size is 17 nm, the local light intensity is found to be more than one order of magnitude stronger than the intensity of the dielectric mode at the film surface. The coupling length is only 2.1 µm at a wavelength of 632.8 nm. Such a local field confinement on demand is expected to facilitate efficient light-matter interaction in integrated photonic devices while minimizing losses typical for plasmonic structures.

5.
Appl Spectrosc ; 70(5): 756-65, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27170777

RESUMO

A real-time image processing algorithm is developed to enhance the sensitivity of a planar single-mode waveguide miniature spectrometer with integrated waveguide gratings. A novel approach of averaging along the arcs in a curved coordinate system is introduced which allows for collecting more light, thereby enhancing the sensitivity. The algorithm is tested using CdSeS/ZnS quantum dots drop casted on the surface of a single-mode waveguide. Measurements indicate that a monolayer of quantum dots is expected to produce guided mode attenuation approximately 11 times above the noise level.

6.
Opt Express ; 23(3): 3316-26, 2015 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-25836190

RESUMO

Platinum germanides (PtGe) were investigated for infrared plasmonic applications. Layers of Pt and Ge were deposited and annealed. X-ray diffraction identified PtGe(2) and Pt(2)Ge(3) phases, and x-ray photo-electron spectroscopy determined vertical atomic composition profiles for the films. Complex permittivity spectra were measured by ellipsometry over the 2 to 15 µm wavelength range. Surface plasmon polariton (SPP) characteristics such as propagation length and field penetration depth were calculated. Photon-to-SPP couplers in the form of 1D lamellar gratings were fabricated and characterized in the range 9 - 10.5 µm via wavelength-dependent specular reflection spectra for multiple angles of incidence. The observed resonances compare well with calculated spectra for SPP excitation on PtGe(2). Platinum germanides are CMOS compatible and may serve as SPP hosts for on-chip mid-IR plasmonic components with tighter field confinement than noble-metal hosts.

7.
Biomed Opt Express ; 4(11): 2585-95, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24312744

RESUMO

Rodent models are increasingly used to study refractive eye development and development of refractive errors; however, there is still some uncertainty regarding the accuracy of the optical models of the rat and mouse eye primarily due to high variability in reported ocular parameters. In this work, we have systematically evaluated the contribution of various ocular parameters, such as radii of curvature of ocular surfaces, thicknesses of ocular components, and refractive indices of ocular refractive media, using variational analysis and a computational model of the rodent eye. Variational analysis revealed that not all variation in ocular parameters has critical impact on the refractive status of the eye. Variation in the depth of the vitreous chamber, thickness of the lens, radius of the anterior surface of the cornea, radius of the anterior surface of the lens, as well as refractive indices for the lens and vitreous, appears to have the largest impact on the refractive error. The radii of the posterior surfaces of the cornea and lens have much smaller contributions to the refractive state. These data provide the framework for further refinement of the optical models of the rat and mouse eye and suggest that extra efforts should be directed towards increasing the linear resolution of the rodent eye biometry and obtaining more accurate data for the refractive indices of the lens and vitreous.

8.
Exp Eye Res ; 115: 87-95, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23838522

RESUMO

It was recently demonstrated that refractive errors in mice stabilize around emmetropic values during early postnatal development, and that they develop experimental myopia in response to both visual form deprivation and imposed optical defocus similar to other vertebrate species. Animal studies also suggest that photopic vision plays critical role in emmetropization in diurnal species; however, it is unknown whether refractive eye development is guided by photopic vision in the mouse, which is a nocturnal species. We used an infrared mouse photorefractor and a high-resolution MRI to clarify the role of photopic visual input in refractive eye development in the mouse. Refractive eye development and form-deprivation myopia in P21-P89 C57BL/6J mice were analyzed under 12:12 h light-dark cycle, constant light and constant darkness regimens. Animals in all experimental groups were myopic at P21 (-13.2 ± 1.6 D, light-dark cycle; -12.5 ± 0.9 D, constant light; -12.5 ± 2.0 D, constant dark). The mean refractive error in the light-dark-cycle-reared animals was -0.5 ± 1.3 D at P32 and, and did not change significantly until P40 (+0.3 ± 0.6 D, P40). Animals in this group became progressively hyperopic between P40 and P89 (+2.2 ± 0.6 D, P67; +3.7 ± 2.0 D, P89). The mean refractive error in the constant-light-reared mice was -1.0 ± 0.7 D at P32 and remained stable until P89 (+0.1 ± 0.6 D, P40; +0.3 ± 0.6 D, P67; 0.0 ± 0.4 D, P89). Dark-reared animals exhibited highly hyperopic refractive errors at P32 (+5.2 ± 1.8 D) and became progressively more hyperopic with age (+8.7 ± 1.9 D, P40; +11.2 ± 1.4 D, P67). MRI analysis revealed that emmetropization in the P40-P89 constant-light-reared animals was associated with larger eyes, a longer axial length and a larger vitreous chamber compared to the light-dark-cycle-reared mice. Constant-light-reared mice also developed 4 times higher degrees of form-deprivation myopia on average compared to light-dark-cycle-reared animals (-12.0 ± 1.4 D, constant light; -2.7 ± 0.7 D, light-dark cycle). Dark-rearing completely prevented the development of form-deprivation myopia (-0.3 ± 0.5 D). Thus, photopic vision plays important role in normal refractive eye development and ocular response to visual form deprivation in the mouse.


Assuntos
Visão de Cores/fisiologia , Modelos Animais de Doenças , Emetropia/fisiologia , Hiperopia/fisiopatologia , Miopia/fisiopatologia , Animais , Animais Recém-Nascidos , Adaptação à Escuridão , Luz , Imageamento por Ressonância Magnética , Camundongos , Camundongos Endogâmicos C57BL , Refração Ocular/fisiologia , Privação Sensorial
9.
Opt Express ; 19(22): 21707-16, 2011 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-22109021

RESUMO

Using analysis and numerical simulation, we have investigated near-infrared and mid-infrared second-harmonic generation (SHG) and sum frequency generation (SFG) in crystal silicon (SOI) waveguides that possess a strong second-order nonlinear susceptibility by virtue of a Si(3)N(4) straining layer applied directly to the top surface of the waveguide. This layer induces anisotropic compressive strain in the waveguide core. Using the technique of TE/TM mode birefringence, we have derived waveguide geometries for both slab and strip channel waveguides that offer perfect phase matching of three lightwaves for SHG/SFG along a uniform waveguide, thereby offering the prospect of efficient wavelength conversion in monolithic silicon photonics.

10.
Opt Express ; 18(19): 20370-83, 2010 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-20940929

RESUMO

Integrated chip-scale optical systems are an attractive platform for the implementation of non-linear optical interactions as they promise compact robust devices that operate reliably with lower power consumption compared to analogs based on bulk nonlinear crystals. The use of guided modes to facilitate nonlinear parametric interactions between optical fields, as opposed to bulk beams, has certain implications on optical parametric oscillations, the most important of which are additional methods for achieving phase synchronism and reduced threshold power due to the tight confinement associated with the guided modes. This work presents a theoretical investigation on the use of polarization dependent mode dispersion in guided wave structures as a means to achieve non-linear parametric oscillations from continuous wave sources with outputs in the mid-infrared region of the spectrum. An Al(2)O(3)/GaP/Al(2)O(3) waveguide system is investigated and shown to produce parametric oscillations at 3 µm to 5 µm from 1 µm to 2 µm input waves utilizing 0.14 µm to 0.30 µm GaP cores. The threshold power is shown to be 320 × less than that obtainable using more traditional quasi-phase matched bulk crystals over the same wavelength range.


Assuntos
Amplificadores Eletrônicos , Gálio/química , Dispositivos Ópticos , Oscilometria/instrumentação , Fosfinas/química , Refratometria/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Raios Infravermelhos
11.
Opt Express ; 18(1): 348-63, 2010 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-20173855

RESUMO

We study guided modes in a conductor-gap-dielectric (CGD) system that includes a low-index dielectric gap layer of deep sub-wavelength thickness sandwiched between a conductor and a high-index dielectric cladding. Analysis of the dispersion equation for CGD modes provides an analytical estimation for the cut-off thickness of the gap layer. This guided mode is unusual because it exists when the gap thickness is less than the cutoff thickness. In the direction normal to the interfaces, the modal electric field is tightly confined within the gap. Sub-wavelength lateral mode confinement is readily provided by a spatial variation of the gap-layer thickness: the modal field localizes at the narrowest gap. Various lateral confinement schemes are proposed and verified by numerical simulations. Possible applications of CGD modes include surface-plasmon nano-lasers (SPASERs) and sensors. If these plasmonic waveguides are scaled for operation at far infrared rather than telecomm wavelengths, then the propagation losses are dramatically reduced, thereby enabling the construction of practical chip-scale plasmonic integrated circuits or PLICs.


Assuntos
Modelos Teóricos , Nanoestruturas/química , Nanotecnologia/instrumentação , Refratometria/instrumentação , Ressonância de Plasmônio de Superfície/instrumentação , Simulação por Computador , Desenho Assistido por Computador , Condutividade Elétrica , Desenho de Equipamento , Análise de Falha de Equipamento
12.
Appl Opt ; 48(28): 5407-12, 2009 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-19798382

RESUMO

We employed the atomic layer deposition technique to grow Al(2)O(3) films with nominal thicknesses of 400, 300, and 200 nm on silicon and soda lime glass substrates. The optical properties of the films were investigated by measuring reflection spectra in the 400-1800 nm wavelength range, followed by numerical fitting assuming the Sellmeier formula for the refractive index of Al(2)O(3). The films grown on glass substrates possess higher refractive indices as compared to the films on silicon. Optical waveguiding is demonstrated, confirming the feasibility of high-index contrast planar waveguides fabricated by atomic layer deposition.

13.
Appl Opt ; 45(30): 7811-7, 2006 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-17068514

RESUMO

We describe the concept of a super compact diffractive imaging spectrometer, with optical components a few millimeters across in all dimensions, capable of detecting optical fluorescence spectra within the entire visible spectral range from 400 nm to 700 nm with resolution of the order of 2 nm. In addition, the proposed spectrometer is capable of working simultaneously with multiple, up to 35, independent input optical channels. A specially designed diffractive optical element integrated with a planar optical waveguide is the key component of the proposed device. In the preliminary experimental tests, a uniform waveguide grating with a microlens was used to mimic operation of the diffractive optical element. A microspectrometer with optical components measured below 1 cm in all dimensions covers the spectral range from 450 nm to 650 nm and shows a spectral resolution of 0.5 nm at wavelengths close to 514 nm and 633 nm.

14.
Appl Opt ; 45(23): 6007-12, 2006 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-16926889

RESUMO

A method for the determination of the optical constants of thin films based on the combination of a waveguide measurement procedure with the spectroscopic measurements made from the UV to the IR is presented. As a test material AlN thin film on sapphire substrates is investigated.

15.
Opt Express ; 14(4): 1505-11, 2006 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-19503475

RESUMO

Uniform period sub-micron gratings have been fabricated using focused ion beam milling on hafnium oxide waveguides. Atomic force microscopy indicates that the gratings have smooth and uniform profiles. At the period of 330 nm, the largest peak-to-peak height that was achieved was 85 nm. Scattering at the grating imperfections was found to be at least two orders of magnitude weaker than the intensity of the diffracted order.

16.
Opt Express ; 14(9): 4064-72, 2006 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19516554

RESUMO

A miniature optical spectrometer with a thin-film planar waveguide grating coupler in combination with a miniature plano-convex focusing lens has been investigated. With optical part of the spectrometer as small as 0.2 cubic cm, the spectral resolution varies from 0.3 nm to 4.6 nm within the wavelength range 488.0 nm - 632.8 nm.

17.
Appl Opt ; 44(3): 378-83, 2005 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-15717827

RESUMO

Mixing dielectric materials in solid-thin-film deposition allows the engineering of thin films' optical constants to meet specific thin-film-device requirements, which can be significantly useful for optoelectronics devices and photonics technologies in general. In principle, by use of radio-frequency (rf) magnetron sputtering, it would be possible to mix any two, or more, materials at different molar ratios as long as the mixed materials are not chemically reactive in the mixture. This freedom in material mixing by use of magnetron sputtering has an advantage by providing a wide range of the material optical constants, which eventually enables the photonic-device designer to have the flexibility to achieve optimal device performance. We deposited three combinations from three different oxides by using rf magnetron sputtering and later investigated them for their optical constants. Each two-oxide mixture was done at different molar ratio levels. Moreover, postdeposition annealing was investigated and was shown to reduce the optical losses and to stabilize the film composition against environmental effects such as aging and humidity exposure. These investigations were supported by the fabricated planar waveguides and optical resonant filters.

18.
Appl Opt ; 43(5): 1114-20, 2004 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-15008491

RESUMO

The potential applications of optical resonant filters for optical communication systems can be significant. Three approaches to achieve a close-to-rectangle filtering profile for optical resonant filter were investigated and proven experimentally. The combination of the filtering sharpness, which comes from the resonance nature, and a flattened filtering window realized the close-to-rectangle filtering profile that can enhance the bandwidth efficiency.

19.
Opt Lett ; 29(6): 605-7, 2004 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-15035485

RESUMO

Simultaneous spatial and spectral filtering by an optical resonant filter has been characterized experimentally to furnish additional insight into the operation and applications of optical resonant filters. Our experimental study can be useful for applications that depend on spatial filtering, spectral filtering, spatial-spectral filtering, and polarization selectivity. One significant application is the integration of an optical resonant filter with semiconductor lasers to control the spatial-spectral radiation for optimum performance.

20.
Appl Opt ; 43(1): 143-8, 2004 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-14714655

RESUMO

Real-time monitoring of thin-film deposition with high resolution is important for precise fabrication of thin-film devices in a technological environment with ever-increasing demands for smaller size and better performance. Using photometry, we were able to achieve a real-time optical monitoring resolution of film thickness that is comparable with a single atomic layer scale (i.e., subnanometer). Filtering noise efficiently and compensating for sources of error by use of an appropriate model produced this high resolution. The procedure proved reliable and can be useful in the thin-film-deposition industry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...