Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 544(7648): 115-119, 2017 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-28355180

RESUMO

Transposable elements are viewed as 'selfish genetic elements', yet they contribute to gene regulation and genome evolution in diverse ways. More than half of the human genome consists of transposable elements. Alu elements belong to the short interspersed nuclear element (SINE) family of repetitive elements, and with over 1 million insertions they make up more than 10% of the human genome. Despite their abundance and the potential evolutionary advantages they confer, Alu elements can be mutagenic to the host as they can act as splice acceptors, inhibit translation of mRNAs and cause genomic instability. Alu elements are the main targets of the RNA-editing enzyme ADAR and the formation of Alu exons is suppressed by the nuclear ribonucleoprotein HNRNPC, but the broad effect of massive secondary structures formed by inverted-repeat Alu elements on RNA processing in the nucleus remains unknown. Here we show that DHX9, an abundant nuclear RNA helicase, binds specifically to inverted-repeat Alu elements that are transcribed as parts of genes. Loss of DHX9 leads to an increase in the number of circular-RNA-producing genes and amount of circular RNAs, translational repression of reporters containing inverted-repeat Alu elements, and transcriptional rewiring (the creation of mostly nonsensical novel connections between exons) of susceptible loci. Biochemical purifications of DHX9 identify the interferon-inducible isoform of ADAR (p150), but not the constitutively expressed ADAR isoform (p110), as an RNA-independent interaction partner. Co-depletion of ADAR and DHX9 augments the double-stranded RNA accumulation defects, leading to increased circular RNA production, revealing a functional link between these two enzymes. Our work uncovers an evolutionarily conserved function of DHX9. We propose that it acts as a nuclear RNA resolvase that neutralizes the immediate threat posed by transposon insertions and allows these elements to evolve as tools for the post-transcriptional regulation of gene expression.


Assuntos
Elementos Alu/genética , RNA Helicases DEAD-box/metabolismo , Genoma Humano/genética , Sequências Repetidas Invertidas/genética , Proteínas de Neoplasias/metabolismo , Edição de RNA/genética , RNA/genética , RNA/metabolismo , Adenosina Desaminase/química , Adenosina Desaminase/deficiência , Adenosina Desaminase/genética , Adenosina Desaminase/isolamento & purificação , Adenosina Desaminase/metabolismo , Animais , Linhagem Celular , RNA Helicases DEAD-box/deficiência , RNA Helicases DEAD-box/genética , Evolução Molecular , Éxons/genética , Regulação da Expressão Gênica , Genes Reporter/genética , Células HEK293 , Humanos , Masculino , Camundongos , Mutagênese/genética , Proteínas de Neoplasias/deficiência , Proteínas de Neoplasias/genética , Conformação de Ácido Nucleico , Ligação Proteica , Biossíntese de Proteínas , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/isolamento & purificação , Isoformas de Proteínas/metabolismo , RNA/biossíntese , RNA/química , RNA Circular , RNA de Cadeia Dupla/química , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/isolamento & purificação , Proteínas de Ligação a RNA/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...