Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life Sci ; 336: 122318, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38035992

RESUMO

AIM: Gentamicin-induced nephrotoxicity limits its widespread use as an effective antibacterial agent. Oxidative stress, inflammatory cytokines and apoptotic cell death are major participants in gentamicin-induced nephrotoxicity. We therefore, investigated whether dihydromyricetin (DHM), the antioxidant and anti-inflammatory flavonoid, could protect against the nephrotoxic effects of gentamicin. METHODS: Male Wistar rats administrated gentamicin (100 mg/kg/day, i.p.) for 8 days. DHM (400 mg/kg, p.o.) was concurrently given with gentamicin for 8 days. Control group received the vehicle of DHM and gentamicin. Histopathological examinations, biochemical measurements and immunohistochemical analyses were done at the end of the study. KEY FINDINGS: Treatment with DHM improved the gentamicin induced deterioration of renal functions; serum levels of urea, creatinine and cystatin-C as well as urinary levels of Kim-1 and NGAL, the sensitive indicators for early renal damage, were declined. Additionally, DHM abrogated gentamicin-induced changes in kidney morphology. These nephroprotective effects were possibly mediated via decreasing renal gentamicin buildup, activating the antioxidant enzymes GSH, SOD and CAT and decreasing lipid peroxidation and nitric oxide levels. Further, DHM suppressed renal inflammation and apoptotic cell death by decreasing the expression of nuclear factor-kappa B (NF-κB), TNF-alpha and caspase-3. These effects were correlated to the upregulation of renal SIRT3 expression. Also, DHM activated the regeneration and replacement of injured tubular cells with new ones via enhancing PAX2 expression. SIGNIFICANCE: DHM is a promising therapeutic target that could prevent acute renal injury induced by gentamicin and help renal tubular cells to recover through its antioxidant, anti-inflammatory and antiapoptotic properties.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Sirtuína 3 , Ratos , Animais , Masculino , Humanos , Gentamicinas/toxicidade , Sirtuína 3/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Regulação para Cima , Ratos Wistar , Rim/metabolismo , Estresse Oxidativo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/metabolismo , Fator de Transcrição PAX2/metabolismo
2.
Pharmaceuticals (Basel) ; 16(4)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37111238

RESUMO

BACKGROUND: Methotrexate (MTX) is an effective anticancer, anti-inflammatory, and immunomodulatory agent. However, it induces a serious pneumonitis that leads to irreversible fibrotic lung damage. This study addresses the protective role of the natural flavonoid dihydromyricetin (DHM) against MTX-induced pneumonitis via modulation of Nrf2/NF-κB signaling crosstalk. METHODS: Male Wistar rats were divided into 4 groups: control, which received the vehicle; MTX, which received a single MTX (40 mg/kg, i.p) at day 9 of the experiment; (MTX + DHM), which received oral DHM (300 mg/kg) for 14 days and methotrexate (40 mg/kg, i.p) on the 9th day; and DHM, which received DHM (300 mg/kg, p.o) for 14 days. RESULTS: Lung histopathological examination and scoring showed a decline in MTX-induced alveolar epithelial damage and decreased inflammatory cell infiltration by DHM treatment. Further, DHM significantly alleviated the oxidative stress by decreasing MDA while increasing GSH and SOD antioxidant levels. Additionally, DHM suppressed the pulmonary inflammation and fibrosis through decreasing levels of NF-κB, IL-1ß, and TGF-ß1 while promoting the expression of Nrf2, a positive regulator of antioxidant genes, and its downstream modulator, HO-1. CONCLUSION: This study identified DHM as a promising therapeutic target against MTX-induced pneumonitis via activation of Nrf2 antioxidant signaling while suppressing the NF-κB mediated inflammatory pathways.

3.
ACS Omega ; 8(7): 6968-6981, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36844536

RESUMO

The structure-based design introduced indoles as an essential motif in designing new selective estrogen receptor modulators employed for treating breast cancer. Therefore, here, a series of synthesized vanillin-substituted indolin-2-ones were screened against the NCI-60 cancer cell panel followed by in vivo, in vitro, and in silico studies. Physicochemical parameters were evaluated with HPLC and SwissADME tools. The compounds demonstrated promising anti-cancer activity for the MCF-7 breast cancer cell line (GI = 6-63%). The compound with the highest activity (6j) was selective for the MCF-7 breast cancer cell line (IC50 = 17.01 µM) with no effect on the MCF-12A normal breast cell line supported by real-time cell analysis. A morphological examination of the used cell lines confirmed a cytostatic effect of compound 6j. It inhibited both in vivo and in vitro estrogenic activity, triggering a 38% reduction in uterine weight induced by estrogen in an immature rat model and hindering 62% of ER-α receptors in in vitro settings. In silico molecular docking and molecular dynamics simulation studies supported the stability of the ER-α and compound 6j protein-ligand complex. Herein, we report that indolin-2-one derivative 6j is a promising lead compound for further pharmaceutical formulations as a potential anti-breast cancer drug.

4.
Biomed Pharmacother ; 155: 113752, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36182732

RESUMO

The anticancer drug methotrexate (MTX) is known to cause hepatotoxicity as a possibly fatal adverse effect that hinders its clinical application. Although the natural flavonoid, dihydromyricetin (DHM), has antioxidant and anti-inflammatory effects; its role against MTX-induced hepatotoxicity has not been explored yet. For this, rats were administrated DHM orally for two weeks at a dose of 300 mg/kg per day, with or without a single i.p. injection of 40 mg/kg MTX on the 9th day of the experiment. MTX caused deterioration in liver structure and function, depicted by an increase in liver enzymes; ALT and AST. Moreover, MTX induced oxidative stress, shown by increasing malondialdehyde and decreasing reduced glutathione and total antioxidant capacity, initiated the inflammatory response via upregulated expression of Toll-like receptor 4 (TLR4) and its downstream transcription factor, nuclear factor-kappa B (NF-κB p65). Consequent to TLR4 signaling cascade, Nucleotide-binding oligomerization domain (NOD)-like receptor family pyrin domain containing 3 (NLRP3) inflammosome was activated and caused caspase 1 mediated transformation of proinflammatory cytokines interleukin 1ß (IL-1ß) and interleukin 18 (IL-18) into their active forms. Interestingly, administering DHM with MTX improved liver structure and function, as well as significantly decreased all oxidative stress and inflammatory signaling. Collectively, DHM possesses antioxidant and anti-inflammatory properties that can ameliorate MTX-induced hepatotoxicity, through down-regulation of liver TLR4/NF-κB and therefore prohibit activation of NLRP3/caspase 1 pathway.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Inflamassomos , Animais , Ratos , Inflamassomos/metabolismo , NF-kappa B/metabolismo , Receptor 4 Toll-Like/metabolismo , Caspase 1/metabolismo , Interleucina-18 , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Interleucina-1beta/metabolismo , Metotrexato/toxicidade , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Flavonóis/farmacologia , Citocinas/metabolismo , Malondialdeído/metabolismo , Anti-Inflamatórios , Glutationa , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Nucleotídeos
5.
Biomed Pharmacother ; 153: 113308, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35752009

RESUMO

OBJECTIVES: Dihydromyricetin (DHM), a natural flavonoid isolated from vine tea with anti-inflammatory activity was evaluated for its ability to prevent vascular endothelial dysfunction caused by hyperglycaemia. METHODS: Vasoconstrictor (phenylephrine-PE) and vasodilator (acetylcholine-ACh) responses were monitored for female rat aorta rings maintained in a bioassay organ bath for 3 h at 37 °C in either low (LG: 10 mM) or high (HG: 40 mM, to mimic hyperglycaemia) glucose-Krebs buffer in the absence or presence of 50 µM DHM. Tissues recovered from the organ bath at 3 h were fixed and analyzed for morphological changes and their expression of eNOS, iNOS, HIF-1α, GLUT1, ROR2 tyrosine kinase, NF-κB, TNF-α, Bax, Bcl2, caspase-3, and forindices of increased oxidative stress. KEY FINDINGS: HG-incubated tissues showed increased PE-stimulated contractile response and decreased ACh-mediated endothelial vasodilation. DHM prevented both of these changes. Besides, HG incubation increased the immunoreactivity to iNOS, HIF-1α, GLUT1, ROR2, NF-κB, TNF-α, Bax, and active caspase-3, and decreased the expression of eNOS and Bcl2. Hyperglycaemia-like conditions also increased the indices of oxidative/nitrosative stress. These HG-induced changes, which were accompanied by an increase in tissue adventitial thickness and inflammatory cell infiltration, were all prevented by DHM. CONCLUSION: Our data demonstrate an anti-inflammatory protective action of DHM to preserve vascular function in the setting of hyperglycaemia.


Assuntos
Hiperglicemia , Doenças Vasculares , Acetilcolina/farmacologia , Animais , Caspase 3/metabolismo , Feminino , Flavonóis , Glucose/toxicidade , Transportador de Glucose Tipo 1 , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , NF-kappa B/metabolismo , Ratos , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteína X Associada a bcl-2/metabolismo
6.
Bioorg Chem ; 119: 105554, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34923243

RESUMO

Nuclear Estrogen receptors (ER) are cytoplasmic proteins; translocated to the nucleus to induce transcriptional signals after getting bound to the estrogen hormone. ER activation implicated in cancer cell proliferation of female reproductive organs. Thus, the discovery of ER antagonists is a reliable strategy to combat estrogen-dependent breast cancer. Endometrial carcinoma is one of the complications encountered upon long-term therapy by selective estrogen receptor modulators (SERMs) like Tamoxifen (TMX) and methyl piperidinopyrazole (MPP). Thus, the ER-full antagonist is a solution to improve the safety of this class of therapeutics during the treatment of breast cancer. We selected MPP as a lead structure to design conformationally constrained analogs. Structural rigidification is a proven strategy to transform the SERMs into full antagonists. Accordingly, we synthesized 7-methoxy-3-(4-methoxyphenyl)-4,5-dihydro-2H-benzo[g]indazoles (4), (6a-c),(8-12) along with the biphenolic counterparts(13-19)that are the anticipated active metabolites. The 4-nitrophenyl derivative(4)is with the most balanced profile regardingthe in vivoanti-uterotrophic potential (EC50 = 4.160 µM); and the cytotoxicity assay of the corresponding active metabolite(13)against ER+ breast cancer cell lines (MCF-7 IC50 = 7.200 µM, T-47D IC50 = 11.710 µM). The inconsiderable uterotrophic activities of the elaborated ER-antagonists and weak antiproliferative activity of the compound(13)against ovarian cancer (SKOV-3 IC50 = 29.800 µM) highlighted it as a good start point to elaborate potential ER-full antagonists devoid of endometrial carcinoma. Extending the pendant chain that protrudes from the 2-(4-(substituted)-phenyl) ring of the new benzo-indazoles is recommended for enhancing the potency based on the binding mode of compound(13)in the ligand-binding domain (LBD) of ER.


Assuntos
Antineoplásicos/farmacologia , Desenho de Fármacos , Antagonistas do Receptor de Estrogênio/farmacologia , Piperidinas/farmacologia , Pirazóis/farmacologia , Receptores de Estrogênio/antagonistas & inibidores , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Antagonistas do Receptor de Estrogênio/síntese química , Antagonistas do Receptor de Estrogênio/química , Feminino , Humanos , Ligantes , Estrutura Molecular , Piperidinas/síntese química , Piperidinas/química , Pirazóis/síntese química , Pirazóis/química , Ratos , Ratos Wistar , Receptores de Estrogênio/metabolismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...