Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Pharm ; 598: 120372, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33621641

RESUMO

The present research aims to enhance the antimicrobial activity of kaolinite surfaces by a one-step cost-effective and energy-efficient dry thermal reaction, producing an antibacterial and antifungal silver-kaolinite (Ag-Kao) nanocomposite agent. Pharmaceutical grade kaolin powder samples, with variable kaolinite structural order-disorder degree, were homogeneously mixed with silver nitrate in a proportion 1:4 AgNO3:kaolin (w/w) and sintered at 400 °C for 30 min. The composition, microstructure, microtexture and surface characteristics of the pyro-fabricated nanocomposites were characterized by XRD/XRF diffractometry, differential scanning calorimetry DSC, FT-IR spectroscopy, TEM/EDX, zeta potential (mV) measured within the 2-12 pH range, and BET method. Physicochemical stability was evaluated by silver dissociation testing under close-neutral and acidic conditions with Ag content assay using ICP-OES. The resulting Ag-Kao nanocomposites exhibited bulk silver contents ranging from 9.29% to 13.32% with high physicochemical stability in both neutral and acidic mediums (Ag dissociation rate <0.5% in 5 days). Ag nanocrystals exhibited particle sizes ranging from 5 to 30 nm, which were embedded and reinforced within the kaolinite matrix. The sizes of the Ag nanocrystals and their distribution patterns on the edges and faces of kaolinite platelets were controlled by the structural order-disorder degree. Highly ordered kaolinites (Hinckley Index, HI > 1) produced platelet edge-clustered silver nanocrystals due to the abundance of the dangling hydroxyls on platelet edges, while the highly disordered kaolinite (HI < 1) provided homogeneous platelet basal-doped silver nanocrystals due to the presence of some residual charges by exposed basal hydroxyl groups with interplatelet silver diffusivity. At pH 2, the magnitude of the positive surface charge was influenced by the silver nanocrystal size. Nanocomposites with the smallest silver nanocrystals (10-5 nm) exhibited the highest positive zeta potential (+15.2 mV to +17.0 mV), while those with larger silver nanocrystals (up to 30 nm) indicated lower positive zeta potential values (+9.5 mV to +3.6 mV). Under the same testing conditions using the Mueller-Hinton broth microdilution method, the raw kaolin samples did not show any significant antimicrobial activity, while all the pyro-fabricated Ag-Kao nanocomposite samples showed potent antibacterial and antifungal activity at low doses (MIC range 0.1-0.0125 mg/mL). Therefore, modulation of the effective electrostatic surface charge of the kaolinite platelets, via thermal doping of silver within their basal planes and edges, was found to be strongly dependent on the pH as well as the size and microtexture of the silver nanocrystals (mainly controlled by the order-disorder degree HI). The resulting modified nanostructure, with physicochemical stability and the efficient surface properties of the designed pyro-fabricated nanocomposite, led to an enhanced synergistic biophysical antimicrobial activity.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Nanocompostos , Antibacterianos , Caulim , Testes de Sensibilidade Microbiana , Espectroscopia de Infravermelho com Transformada de Fourier
2.
Appl Clay Sci ; 199: 105865, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33078035

RESUMO

This work aimed at studying the potentiality of interactions between kaolinite surfaces and a protein-fragment (350-370 amino acid units) extracted from the glycoprotein E1 in the transmembrane domain (TMD) of hepatitis C virus capsid. A computational work was performed for locating the potential electrostatic interaction sites between kaolinite aluminol and siloxane surfaces and the residues of this protein-fragment ligand, monitoring the possible conformational changes. This hydrated neutralized kaolinite/protein-fragment system was simulated by means of molecular modeling based on atomistic force fields based on empirical interatomic potentials and molecular dynamic (MD) simulations. The MD calculations indicated that the studied protein-fragment interacted with the kaolinite surfaces with an exothermic process and structural distortions were observed, particularly with the hydrophilic aluminol surface by favorable adsorption energy. The viral units isolation or trapping by the adsorption on the kaolinite nanoparticles producing structural distortion of the peptide ligands could lead to the blockage of the entry on the receptor and hence a lack of viral activity would be produced. Therefore, these findings with the proposed insights could be an useful information for the next experimental and development studies in the area of discovering inhibitors of the global challenged hepatitis and other pathogenic viruses based on the phyllosilicate surface activity. These MD studies can be extended to other viruses like the COVID-19 interacting with silicate minerals surfaces.

3.
Int J Pharm ; 533(1): 34-48, 2017 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-28943206

RESUMO

Kaolinite Al2Si2O5(OH)4 is an abundant and inexpensive geomaterial regarded as one of the most common clay minerals in the earth's crust and the most widespread phase among the other kaolin polymorphs (halloysite, dickite and nacrite). Structurally, it is a hydrous aluminum phyllosilicate member belonging to the dioctahedral 1:1 kaolin mineral group. The particle size of the pseudohexagonal kaolinite platelets is normally <2µm (if compared to a human red blood cell of a typical diameter 6.2-8.2µm or to a virus particle of about 50nm diameter). The kaolinite platelets, either stacked together with a common booklet-like shape in a highly ordered structure (well crystallized) or disordered structure (poorly crystallized), consist of layers considered as a strong dipole of hydrophobic siloxane surface dominated by negative charges, and the other hydrophilic aluminol surface carries positive charges. Kaolinite has been used in many pharmaceutical applications as excipient or active ingredient, because it exhibits excellent physical, chemical and surface physicochemical properties. In addition to their classical pharmaceutical uses, kaolinite and its derivatives have been recently considered as a promising material in many biomedical innovation areas such as drug, protein and gene delivery based on the high interaction capacities with organic and biochemical molecules, bioadhesion and cellular uptake. Pharmaceutical kaolin grades are considerably demanded for usage as excipient in formulations of solid and semi-solid dosage forms. The most important functionalities of kaolin used as excipient are reported as diluent, binder, disintegrant, pelletizing and granulating, amorphizing, particle film coating, emulsifying and suspending agent. Because of its uninjured bioactivity, kaolinite has been also used as active agent for treatment of some common diseases. It can be topically administered as hemostatic agent, dermatological protector, anti-inflammatory agent and in pelotherapy, or orally as gastrointestinal protector, and antibacterial, antiviral, detoxification or antidiarrheal agent. With these premises, the future of kaolinite in health-care uses is strongly interesting, especially in the development of pharmaceutical and cosmetic industries. In biomedicinal investigations, it can be considered as a promising natural geomaterial for designing new derivatives that can contribute in the trials of discovering new therapeutic systems and treatment pathways of global challenge diseases such as cancer, viruses, antibiotic resistant bacteria, alzheimer, chronic skeletomuscular and geriatric diseases.


Assuntos
Caulim , Animais , Biofarmácia , Excipientes/química , Humanos , Indústrias , Caulim/química , Peloterapia , Farmacopeias como Assunto
4.
Dis Markers ; 19(1): 19-25, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-14757943

RESUMO

Although peroxisome proliferators are considered non-genotoxic agents, most of them, nevertheless, were found to promote and/or induce, hepatocellular carcinoma (HCC) in rodents. The aim of the present study is, first, to investigate whether the peroxisome proliferator perfluorooctanoic acid (PFOA) possesses inherent liver cancer promoting activity, and second, to study the possible mechanisms involved. To acheive these aims two protocols have been applied, a biphasic protocol (initiation by diethyl-nitrozamine (DEN) 200 mg/kg i.p. followed by treatment with 0.005% or 0.02% perflourooctanoic acid (PFOA) for 14 and 25 weeks) and a triphasic initiation, selection-promotion (IS) protocol (initiation by giving 200 mg/kg DEN i.p. followed by a selection procedure for 2 weeks consisting of giving 0.03% 2-acetylaminofluorene (2-AAF) in diet). In the middle of this treatment a single oral dose of carbon tetrachloride (2.0 ml/kg) was given, followed by giving diet containg 0.015% of PFOA for 25 weeks. After applying both protocols, our results showed slight increase in the catalase activity while acyl CoA oxidase activity was markedly increased. Both experiments indicated that PFOA has a liver cancer promoting activity. Other groups of rats were given either basal diet or diet containing 0.02% PFOA. Five or nine weeks later they were sacrificed and the levels of 8-hydroxydeoxyguanosine in the isolated DNA were estimated. The data showed a slight nonetheless insignificant increase in 8-hydroxydeoxyguanosine. From the present data, it is concluded that PFOA is a true liver cancer promoter that may not require extensive initial DNA damage for its promoting activity.


Assuntos
Caprilatos/administração & dosagem , Desoxiguanosina/análogos & derivados , Desoxiguanosina/análise , Fluorocarbonos/administração & dosagem , Fígado/efeitos dos fármacos , Peroxissomos/efeitos dos fármacos , Peroxissomos/enzimologia , 8-Hidroxi-2'-Desoxiguanosina , Acil-CoA Oxidase/metabolismo , Animais , Carcinógenos/farmacologia , Catalase/metabolismo , DNA/química , Dano ao DNA , Dieta , Dietilnitrosamina/administração & dosagem , Fígado/química , Fígado/enzimologia , Neoplasias Hepáticas/induzido quimicamente , Masculino , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...